Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

2012 ◽  
Vol 19 (3) ◽  
pp. 403-413 ◽  
Author(s):  
A. M. Kler ◽  
Yu. B. Zakharov
Author(s):  
Alexandr Maslovskiy

For the last fifteen years various research groups have been trying to develop microwave systems that could be used for gas turbine engine condition monitoring and diagnostics. Such systems possess substantial advantages in comparison to other known systems and make possible to define rotor blades vibration parameters, discover blades rupture or their deformation, passing of foreign objects through air-gas channel, combustion chamber burnout as well as to define rotor rotation frequency and angular position. The article gives several examples of microwave systems use (detection of foreign objects in air-gas channel, dents in rotor blades) and results of experiments carried out by us. At present time we work on industrial microwave systems that will be used for measuring of tip clearance on ground and aircraft turbines. The article offers an analysis of microwave systems operation when performing measurements on shrouded and shroudless blades. It describes design concept of microwave system allowing measuring of tip clearance within the accuracy of 0.05 mm for each turbine blade for the whole rotation frequency range and under impact of high temperature and vibration. The results of measuring tip clearance on laboratory bench and gas generator of civil gas turbine engine are offered for consideration. The results of such tests make possible to consider the possibility of implementing proposed design of microwave turbine tip clearance measuring system in commercial equipment for test rigs that are used for gas turbine engine tests and fine tuning. The implementation of proposed design in aircraft version of the equipment is also considered.


2008 ◽  
Vol 55 (2) ◽  
pp. 129-136 ◽  
Author(s):  
A. M. Klypina ◽  
V. P. Trushechkin ◽  
L. D. Chistyakova ◽  
D. A. Kazanskii

In the present work the first stage rotor blade of a two- stage gas turbine has been analyzed for structural, thermal using ANSYS 9.0, which is a powerful Finite Element Software. In the present work, the first stage rotor blade of the gas turbine has been analyzed for the mechanical and radial elongations resulting from the tangential, axial and centrifugal forces. The gas forces namely tangential, axial were determined by constructing velocity triangles at inlet and exist of rotor blades. The rotor blade was then analyzed using ANSYS 9.0 for the temperature distribution. The material of the blade was specified as N155 but its properties were not given. This material is an iron based super alloy and structural and thermal properties at gas room and room temperatures. The turbine blade along with the groove is considered for the static, thermal, modal analysis. The first stage rotor blade of a two-stage gas turbine has been analyzed for structural, thermal using ANSYS 9.0 Finite Element Analysis software.


2020 ◽  
Vol 197 ◽  
pp. 11007
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Alessio Suman ◽  
Alessandro Vulpio

The study of the adhesion of micro sized particles to gas turbine internal surfaces, commonly known as gas turbine fouling, has gained increasing attention in the last years due to its dramatic effect on machine performance and reliability. On-field fouling analysis is mostly related to visual inspections during overhaul and/or programmed stops, which are performed, in particular, when gas turbine performance degradation falls under predetermined thresholds. However, these analyses, even if performed in the most complete as possible way, are rarely (or never) related to the conditions under which the gas turbine contamination takes place since the affecting parameters are difficult or even impossible to be adequately monitored. In the present work, a small scale multistage axial compressor is used to experimentally simulate the fouling phenomenon. The test rig allows the accurate control of the most relevant operating parameters which influence the fouling phenomenon. The compressor performance loss due to particle contamination has been quantitatively assessed. Soot particles appear stickier, especially in the presence of high humidity, and represent the most harmful operating conditions for the compressor unit. The deposits on the stator vanes and the rotor blades have been detected and post-processed, highlighting the most affected regions of each compressor stage employing an image analysis package tool.


Author(s):  
Zixi Han ◽  
Mian Li ◽  
Zixian Jiang ◽  
Zuoxing Min ◽  
Sophie Bourmich

Strength requirement is one of the most important criteria in the design of gas turbine casing. Traditionally, deterministic analyses are used in strength assessment, with boundary conditions and loads set as fixed design values. However, real boundary conditions and loads in the operation can often differ from the fixed design values, such that the mechanical integrity of the turbine casing can vary from the strength and fatigue calculations. In this work, the effect of the variability of the boundary conditions and loads is investigated on the static thermal stress problem of gas turbine casings using a probabilistic approach. The probability distribution is estimated using a Monte Carlo simulation based on the distribution of boundary conditions and loads obtained from field measurements. The finite element analysis is used to calculate the stress corresponding to different boundary conditions and a surrogate model is built to reduce the computational time of Monte Carlo simulations. This methodology is applied to a real engineering case which better quantifies the strength assessment result.


Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang ◽  
Chengxiong Pan ◽  
Guangyun Jiao

Abstract The inhomogeneity of temperature in a turbine is related to the nonuniform heat release and air injections in combustors. In addition, it is influenced by the interactions between turbine cascades and coolant injections. Temperature inhomogeneity results in nonuniform flow temperature at turbine outlets, which is commonly measured by multiple thermal couples arranged in the azimuthal direction to monitor the operation of a gas turbine engine. Therefore, the investigation of temperature inhomogeneity transportation in a multistage gas turbine should help in detecting and quantifying the over-temperature or flameout of combustors using turbine exhaust temperature. Here the transportation of temperature inhomogeneity inside the four-stage turbine of a 300-MW gas turbine engine was numerically investigated using 3D CFD. The computational domain included all four stages of the turbine, consisting of more than 500 blades and vanes. Realistic components (N2, O2, CO2, and H2O) with variable heat capacities were considered for hot gas and cooling air. Coolants were added to the computational domain through more than 19,000 mass and momentum source terms. his was simple compared to realistic cooling structures. A URANS CFD run with over-temperature/flameout at 6 selected combustors out of 24 was carried out. The temperature distributions at rotor–stator interfaces and the turbine outlet were quantified and characterized by Fourier transformations in the time domain and space domain. It is found that the transport process from the hot-streaks/cold-streaks at the inlet to the outlet is relatively stable. The cold and hot fluid is redistributed in time and space due to the stator and rotor blades, in the region with a large parameter gradient at the inlet, strong unsteady temperature field and composition field appear. The distribution of the exhaust gas composition has a stronger correlation with the inlet temperature distribution and is less susceptible to interference.


Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength and component functionality requirements while in consideration of the applicable materials, realizable manufacturing and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design and overall performance prediction of a millimeter-scale radial turbine with rotor diameter of 10mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the micro radial turbine. The leaving velocity loss in micro gas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number thus improving the total-static efficiency. Different from general gas turbines, micro gas turbines are operated in low Reynolds numbers, 104∼105, which has significant effect on flow separation, heat transfer and laminar to turbulent flow transition. Based on the selected rotor profile, several micro gas turbine configurations with different tip clearances of 0.1mm, 0.2mm and 0.3mm, respectively; two different isothermal wall conditions; and two laminar-turbulent transition models were investigated to understand the particular influence of low Reynolds number. These influences on the overall performance of the micro gas turbine were analyzed in details. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale micro radial turbines.


Author(s):  
K. Mathioudakis ◽  
E. Loukis ◽  
K. D. Papailiou

The results from an experimental investigation of the compressor casing vibration of an industrial Gas Turbine are presented. It is demonstrated that statistical properties of acceleration signals can be linked with engine operating conditions. The power content of such signals is dominated by contributions originating from the stages of the compressor, while the contribution of the shaft excitation is secondary. Using non-parametric identification methods, accelerometer outputs are correlated to unsteady pressure measurements taken by fast response transducers at the inner surface of the compressor casing. The transfer functions allow reconstruction of unsteady pressure signal features from the accelerometer readings. A possibility is thus provided, for “seeing” the unsteady pressure field of the rotor blades without actually penetrating through the casing, but by simply observing its external surface vibrations.


Author(s):  
Koichi Yonezawa ◽  
Genki Nakai ◽  
Kazuyasu Sugiyama ◽  
Katsuhiko Sugita ◽  
Shuichi Umezawa

In order to keep a high efficiency of a gas turbine, it is important to make a suitable maintenance. Gas turbine nozzle guide vanes (NGVs) and turbine rotor blades deteriorate through a long-time operation due to various causes such as a particle attachment, erosion, and a thermal stress. In the present study, a numerical investigation has been carried out to clarify the influence of the NGV and the rotor blade deterioration on aerodynamics in a 3-stage gas turbine. Geometries of the NGV and the rotor blade were measured from a real gas turbine using a 3-D scanner. The first stage NGVs and rotor blades usually deteriorate seriously and are usually replaced at certain intervals. Two kinds of the geometries of the NGV and the rotor blade of the first stage were obtained, which are the new ones before use and the used ones to be replaced. For the second stage and the third stage, the geometries before use were used in the computations. The numerical results show that the isentropic efficiency of the first stage increases and that of the second stage decrease due to the deterioration of the first stage. The efficiency of the third stage is not affected significantly. The mechanisms are discussed from the observation of the flow fields.


2004 ◽  
Vol 126 (4) ◽  
pp. 770-785 ◽  
Author(s):  
Paolo Chiesa ◽  
Ennio Macchi

All major manufacturers of large size gas turbines are developing new techniques aimed at achieving net electric efficiency higher than 60% in combined cycle applications. An essential factor for this goal is the effective cooling of the hottest rows of the gas turbine. The present work investigates three different approaches to this problem: (i) the most conventional open-loop air cooling; (ii) the closed-loop steam cooling for vanes and rotor blades; (iii) the use of two independent closed-loop circuits: steam for stator vanes and air for rotor blades. Reference is made uniquely to large size, single shaft units and performance is estimated through an updated release of the thermodynamic code GS, developed at the Energy Department of Politecnico di Milano. A detailed presentation of the calculation method is given in the paper. Although many aspects (such as reliability, capital cost, environmental issues) which can affect gas turbine design were neglected, thermodynamic analysis showed that efficiency higher than 61% can be achieved in the frame of current, available technology.


Sign in / Sign up

Export Citation Format

Share Document