Quadrotor Singularity Free Modeling and Acrobatic Maneuvering

Author(s):  
Haowen Liu ◽  
Bingen Yang

Abstract When an unmanned aerial vehicle (UAV) navigates reactively over an unknown land, it may encounter terrains that require aggressive maneuver to keep the designed coasting speed while staying on the path. During this execution of the aggressive maneuver, the UAV can experience singularity. In this article, a vertical loop aggressive maneuver performed by a quadrotor UAV is investigated. Due to the physical configuration of the quadrotor, the conventional modeling and tracking control method may not be desirable if certain requirements, such as fast coasting speed and sharp turns, are imposed. In this work, a new modeling and maneuver control method, which is called the controlled loop path following (CLPF) method is developed. As shown in numerical examples, the proposed singularity-free model and control method enables a quadrotor to be operated in aggressive maneuverability with features like automatic flipping and precise trajectory following.

2017 ◽  
Vol 67 (3) ◽  
pp. 245 ◽  
Author(s):  
Sudhir Nadda ◽  
A. Swarup

The model of a quadrotor unmanned aerial vehicle (UAV) is nonlinear and dynamically unstable. A flight controller design is proposed on the basis of Lyapunov stability theory which guarantees that all the states remain and reach on the sliding surfaces. The control strategy uses sliding mode with a backstepping control to perform the position and attitude tracking control. This proposed controller is simple and effectively enhance the performance of quadrotor UAV. In order to demonstrate the robustness of the proposed control method, White Gaussian Noise and aerodynamic moment disturbances are taken into account. The performance of the nonlinear control method is evaluated by comparing the performance with developed linear quadratic regulator and existing backstepping control technique and proportional-integral-derivative from the literature. The comparative performance results demonstrate the superiority and effectiveness of the proposed control strategy for the quadrotor UAV.


Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yunping Liu ◽  
Xijie Huang ◽  
Yonghong Zhang ◽  
Yukang Zhou

This paper focuses on the dynamic stability analysis of a manipulator mounted on a quadrotor unmanned aerial vehicle, namely, a manipulating unmanned aerial vehicle (MUAV). Manipulator movements and environments interaction will extremely affect the dynamic stability of the MUAV system. So the dynamic stability analysis of the MUAV system is of paramount importance for safety and satisfactory performance. However, the applications of Lyapunov’s stability theory to the MUAV system have been extremely limited, due to the lack of a constructive method available for deriving a Lyapunov function. Thus, Lyapunov exponent method and impedance control are introduced, and the Lyapunov exponent method can establish the quantitative relationships between the manipulator movements and the dynamics stability, while impedance control can reduce the impact of environmental interaction on system stability. Numerical simulation results have demonstrated the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document