A LIDAR-Based Clustering Technique for Obstacles and Lane Boundaries Detection in Assisted and Autonomous Driving

Author(s):  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Nicola Amati ◽  
Andrea Tonoli

Abstract This paper presents a clustering technique for the detection of the obstacles and lane boundaries on a road. The algorithm consists of two nested clustering stages. The first stage is based on hierarchical clustering, and the second on k-means clustering. The method exploits a preliminary ground-plane filtering algorithm to process the raw LIDAR point cloud, that is based on the semantic segmentation of point clouds. The clustering algorithm estimates the position of the obstacles that define the race track. Once the race track is sensed, the lane boundaries are detected. The method is validated experimentally on a four-wheel drive electric vehicle participating in the Formula SAE events. The validation environment is structured with traffic cones to define the race track.

Author(s):  
Jian Wu ◽  
Qingxiong Yang

In this paper, we study the semantic segmentation of 3D LiDAR point cloud data in urban environments for autonomous driving, and a method utilizing the surface information of the ground plane was proposed. In practice, the resolution of a LiDAR sensor installed in a self-driving vehicle is relatively low and thus the acquired point cloud is indeed quite sparse. While recent work on dense point cloud segmentation has achieved promising results, the performance is relatively low when directly applied to sparse point clouds. This paper is focusing on semantic segmentation of the sparse point clouds obtained from 32-channel LiDAR sensor with deep neural networks. The main contribution is the integration of the ground information which is used to group ground points far away from each other. Qualitative and quantitative experiments on two large-scale point cloud datasets show that the proposed method outperforms the current state-of-the-art.


2021 ◽  
Vol 13 (16) ◽  
pp. 3121
Author(s):  
Beanbonyka Rim ◽  
Ahyoung Lee ◽  
Min Hong

Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a challenge for a deep learning approach, due to their unstructured, unorder, irregular, and large-scale characteristics. Therefore, this paper presents an encoder–decoder shared multi-layer perceptron (MLP) with multiple losses, to address an issue of this semantic segmentation. The challenge rises a trade-off between efficiency and effectiveness in performance. To balance this trade-off, we proposed common mechanisms, which is simple and yet effective, by defining a random point sampling layer, an attention-based pooling layer, and a summation of multiple losses integrated with the encoder–decoder shared MLPs method for the large-scale outdoor point clouds semantic segmentation. We conducted our experiments on the following two large-scale benchmark datasets: Toronto-3D and DALES dataset. Our experimental results achieved an overall accuracy (OA) and a mean intersection over union (mIoU) of both the Toronto-3D dataset, with 83.60% and 71.03%, and the DALES dataset, with 76.43% and 59.52%, respectively. Additionally, our proposed method performed a few numbers of parameters of the model, and faster than PointNet++ by about three times during inferencing.


Author(s):  
M. Soilán ◽  
A. Nóvoa ◽  
A. Sánchez-Rodríguez ◽  
B. Riveiro ◽  
P. Arias

Abstract. Transport infrastructure monitoring has lately attracted increasing attention due to the rise in extreme natural hazards posed by climate change. Mobile Mapping Systems gather information regarding the state of the assets, which allows for more efficient decision-making. These systems provide information in the form of three-dimensional point clouds. Point cloud analysis through deep learning has emerged as a focal research area due to its wide application in areas such as autonomous driving. This paper aims to apply the pioneering PointNet, and the current state-of-the-art KPConv architectures to perform scene segmentation of railway tunnels, in order to validate their employability over heuristic classification methods. The approach is to perform a multi-class classification that classifies the most relevant components of tunnels: ground, lining, wiring and rails. Both architectures are trained from scratch with heuristically classified point clouds of two different railway tunnels. Results show that, while both architectures are suitable for the proposed classification task, KPConv outperforms PointNet with F1-scores over 97% for ground, lining and wiring classes, and over 90% for rails. In addition, KPConv is tested using transfer learning, which gives F1-scores slightly lower than for the model training from scratch but shows better generalization capabilities.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4329 ◽  
Author(s):  
Guorong Cai ◽  
Zuning Jiang ◽  
Zongyue Wang ◽  
Shangfeng Huang ◽  
Kai Chen ◽  
...  

Semantic segmentation of 3D point clouds plays a vital role in autonomous driving, 3D maps, and smart cities, etc. Recent work such as PointSIFT shows that spatial structure information can improve the performance of semantic segmentation. Motivated by this phenomenon, we propose Spatial Aggregation Net (SAN) for point cloud semantic segmentation. SAN is based on multi-directional convolution scheme that utilizes the spatial structure information of point cloud. Firstly, Octant-Search is employed to capture the neighboring points around each sampled point. Secondly, we use multi-directional convolution to extract information from different directions of sampled points. Finally, max-pooling is used to aggregate information from different directions. The experimental results conducted on ScanNet database show that the proposed SAN has comparable results with state-of-the-art algorithms such as PointNet, PointNet++, and PointSIFT, etc. In particular, our method has better performance on flat, small objects, and the edge areas that connect objects. Moreover, our model has good trade-off in segmentation accuracy and time complexity.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5900
Author(s):  
Sungjin Cho ◽  
Chansoo Kim ◽  
Jaehyun Park ◽  
Myoungho Sunwoo ◽  
Kichun Jo

LiDAR-based Simultaneous Localization And Mapping (SLAM), which provides environmental information for autonomous vehicles by map building, is a major challenge for autonomous driving. In addition, the semantic information has been used for the LiDAR-based SLAM with the advent of deep neural network-based semantic segmentation algorithms. The semantic segmented point clouds provide a much greater range of functionality for autonomous vehicles than geometry alone, which can play an important role in the mapping step. However, due to the uncertainty of the semantic segmentation algorithms, the semantic segmented point clouds have limitations in being directly used for SLAM. In order to solve the limitations, this paper proposes a semantic segmentation-based LiDAR SLAM system considering the uncertainty of the semantic segmentation algorithms. The uncertainty is explicitly modeled by proposed probability models which are come from the data-driven approaches. Based on the probability models, this paper proposes semantic registration which calculates the transformation relationship of consecutive point clouds using semantic information with proposed probability models. Furthermore, the proposed probability models are used to determine the semantic class of the points when the multiple scans indicate different classes due to the uncertainty. The proposed framework is verified and evaluated by the KITTI dataset and outdoor environments. The experiment results show that the proposed semantic mapping framework reduces the errors of the mapping poses and eliminates the ambiguity of the semantic information of the generated semantic map.


2020 ◽  
Vol 10 (7) ◽  
pp. 2391
Author(s):  
Can Chen ◽  
Luca Zanotti Fragonara ◽  
Antonios Tsourdos

In order to achieve a better performance for point cloud analysis, many researchers apply deep neural networks using stacked Multi-Layer-Perceptron (MLP) convolutions over an irregular point cloud. However, applying these dense MLP convolutions over a large amount of points (e.g., autonomous driving application) leads to limitations due to the computation and memory capabilities. To achieve higher performances but decrease the computational complexity, we propose a deep-wide neural network, named ShufflePointNet, which can exploit fine-grained local features, but also reduce redundancies using group convolution and channel shuffle operation. Unlike conventional operations that directly apply MLPs on the high-dimensional features of a point cloud, our model goes “wider” by splitting features into groups with smaller depth in advance, having the respective MLP computations applied only to a single group, which can significantly reduce complexity and computation. At the same time, we allow communication between groups by shuffling the feature channel to capture fine-grained features. We further discuss the multi-branch method for wider neural networks being also beneficial to feature extraction for point clouds. We present extensive experiments for shape classification tasks on a ModelNet40 dataset and semantic segmentation task on large scale datasets ShapeNet part, S3DIS and KITTI. Finally, we carry out an ablation study and compare our model to other state-of-the-art algorithms to show its efficiency in terms of complexity and accuracy.


Author(s):  
A. Leichter ◽  
M. Werner ◽  
M. Sester

Abstract. Feature extraction from a range of scales is crucial for successful classification of objects of different size in 3D point clouds with varying point density. 3D point clouds have high relevance in application areas such as terrain modelling, building modelling or autonomous driving. A large amount of such data is available but also that these data is subject to investigation in the context of different tasks like segmentation, classification, simultaneous localisation and mapping and others. In this paper, we introduce a novel multiscale approach to recover neighbourhood in unstructured 3D point clouds. Unlike the typical strategy of defining one single scale for the whole dataset or use a single optimised scale for every point, we consider an interval of scales. In this initial work our primary goal is to evaluate the information gain through the usage of the multiscale neighbourhood definition for the calculation of shape features, which are used for point classification. Therefore, we show and discuss empirical results from the application of classical classification models to multiscale features. The unstructured nature of 3D point cloud makes it necessary to recover neighbourhood information before meaningful features can be extracted. This paper proposes the extraction of geometrical features from a range of neighbourhood with different scales, i.e. neighborhood ranges. We investigate the utilisation of the large set of features in combination with feature aggregation/selection algorithms and classical machine learning techniques. We show that the all-scale-approach outperform single scale approaches as well as the approach with an optimised per point selected scale.


Author(s):  
Desire Mulindwa Burume ◽  
Shengzhi Du

Beyond semantic segmentation,3D instance segmentation(a process to delineate objects of interest and also classifying the objects into a set of categories) is gaining more and more interest among researchers since numerous computer vision applications need accurate segmentation processes(autonomous driving, indoor navigation, and even virtual or augmented reality systems…) This paper gives an overview and a technical comparison of the existing deep learning architectures in handling unstructured Euclidean data for the rapidly developing 3D instance segmentation. First, the authors divide the 3D point clouds based instance segmentation techniques into two major categories which are proposal based methods and proposal free methods. Then, they also introduce and compare the most used datasets with regard to 3D instance segmentation. Furthermore, they compare and analyze these techniques performance (speed, accuracy, response to noise…). Finally, this paper provides a review of the possible future directions of deep learning for 3D sensor-based information and provides insight into the most promising areas for prospective research.


Sign in / Sign up

Export Citation Format

Share Document