Exploring System of Systems Resilience vs. Affordability Trade-Space Using a Bio-Inspired Metric

Author(s):  
Abheek Chatterjee ◽  
Richard Malak ◽  
Astrid Layton

Abstract The objective of this study is to investigate the value of an ecologically inspired architectural metric called the Degree of System Order in the System of Systems (SoS) architecting process. Two highly desirable SoS attributes are the ability to withstand and recover from disruptions (resilience) and affordability. In practice, more resilient SoS architectures are less affordable and it is essential to balance the trade-offs between the two attributes. Ecological research analyzing long-surviving ecosystems (nature’s resilient SoS) using the Degree of System Order metric has found a unique balance of efficient and redundant interactions in their architecture. This balance implies that highly efficient ecosystems tend to be inflexible and vulnerable to perturbations while highly redundant ecosystems fail to utilize resources effectively for survival. Motivated by this unique architectural property of ecosystems, this study investigates the response to disruptions vs. affordability trade-space of a large number of feasible SoS architectures. Results indicate that the most favorable SoS architectures in this trade-space share a specific range of values of Degree of System Order. This suggests that Degree of System Order can be a key metric in engineered SoS development. Evaluating the Degree of System Order does not require detailed simulations and can, therefore, guide the early stage SoS design process towards more optimal SoS architectures.

Author(s):  
Abheek Chatterjee ◽  
Richard Malak ◽  
Astrid Layton

Abstract The objective of this study is to investigate the value of an ecologically inspired architectural metric called the Degree of System Order in the System of Systems (SoS) architecting process. Two highly desirable SoS attributes are the ability to withstand and recover from disruptions (resilience) and affordability. In practice, more resilient SoS architectures are less affordable and it is essential to balance the trade-offs between the two attributes. Ecological research analyzing long-surviving ecosystems (nature's resilient SoS) using the Degree of System Order metric has found a unique balance of efficient and redundant interactions in their architecture. This balance implies that highly efficient ecosystems tend to be inflexible and vulnerable to perturbations while highly redundant ecosystems fail to utilize resources effectively for survival. Motivated by this unique architectural property of ecosystems, this study investigates the response to disruptions vs. affordability trade-space of a large number of feasible SoS architectures. Results indicate that the most favorable SoS architectures in this trade-space share a specific range of values of Degree of System Order. This suggests that Degree of System Order can be a key metric in engineered SoS development. Evaluating the Degree of System Order does not require detailed simulations and can, therefore, guide the early stage SoS design process towards more optimal SoS architectures.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A S Piperakis ◽  
D J Andrews

Alongside deploying weapons and sensors what makes a warship distinct is its survivability, being the measure that enables a warship to survive in a militarily hostile environment. The rising cost of warship procurement, coupled with declining defence budgets, has led to cost cutting, often aimed at aspects, such as survivability, which may be difficult to quantify in a manner that facilitates cost capability trade-offs. Therefore, to meet ever-reducing budgets, in real terms, innovation in both the design process and the design of individual ships is necessary, especially at the crucial early design stages. Computer technology can be utilised to exploit architecturally orientated preliminary design approaches, which have been conceived to explore innovation early in the ship design process and the impact of such issues as survivability. A number of survivability assessment tools currently exist; however, most fail to integrate all the constituent elements of survivability (i.e. susceptibility, vulnerability and recoverability), in that they are unable to balance between the component aspects of survivability. Some of these tools are qualitative and therefore less than ideal in specifying survivability requirements, others are aimed towards the more detailed design stages where implementing changes is heavily constrained or even impractical. This paper presents a survivability assessment approach combining various tools used by UCL and the UK Ministry of Defence, as well as a new approach for recoverability assessment. The proposed method attempts to better integrate and quantify survivability in early stage ship design, which is facilitated by the UCL derived, architecturally focused, design building block approach. The integrated survivability method is demonstrated for a set of naval combatant concept designs and for two replenishment ship studies to test the robustness of the proposed approach.


2017 ◽  
Vol 33 (02) ◽  
pp. 81-100
Author(s):  
Rachel Pawling ◽  
Victoria Percival ◽  
David Andrews

For many years, the design spiral has been seen to be a convenient model of an acknowledged complex process. It has virtues particularly in recognizing the ship design interactive and, hopefully, converging nature of the process. However, many find it unsatisfactory. One early criticism focused on its apparent assumption of a relatively smooth process to a balanced solution implied by most ship concept algorithms. The paper draws on a postgraduate design investigation using the University College London Design Building Block approach, which looked specifically at a nascent naval combatant design and the issues of size associated with "passing decks" and margins. Results from the study are seen to suggest that there are distinct regions of cliffs and plateau in plots of capability against design output, namely ship size and cost. These findings are discussed with regard to the insight they provide into the nature of such ship designs and different ways of representing the ship design process. The paper concludes that the ship design spiral is a misleading and unreliable representation of complex ship design at both the strategic and detailed iterative levels.


2011 ◽  
Vol 27 (03) ◽  
pp. 137-145 ◽  
Author(s):  
Deniz de Koningh ◽  
Herbert Koelman ◽  
Hans Hopman

Conventionally, the rooms and spaces of a ship are either modeled as volumetric entities, or with the aid of bulkheads and decks. According to our knowledge, no simple representation exists where both entities can be modeled independently, and where automated conversion from one view (volumetric) to the other (planes) is possible. This paper introduces a simple yet effective approach, where a ship designer can mix the use of volumes and planes in any fashion. Furthermore, this modeling method is applied in a novel tool to manage ship subdivision constraints. As quite a few numerical constraints are known a priori, they can be defined in a list and assigned to specific subdivision elements. Examples are bulkhead locations or required tank volumes or deck areas. A constraint management tool is developed that evaluates the ship layout design during the design process. The designer will be able to modify or add constraints, and the tool will support the designer by managing these constraints during the design process. If the hull form changes, all submitted rules will be updated according to the new main particulars. If one of the constraints does not comply, an adjustment or alternative can be chosen at that moment and the impact of this change is directly visible. The designer can also ask the tool to provide a ship layout design that complies best with the constraints entered. When the Constraint Management program is used, a feasible ship compartment design can be made in a quick manner and the designer is kept from making errors. This means that a correct ship layout model is available on which probabilistic damage stability calculations and weight estimations can be performed in an early stage. This method has been implemented in a computer program, so actual design examples are discussed.


2021 ◽  
pp. 62-77
Author(s):  
Negar Kalantar ◽  
Alireza Borhani

After sufficient consideration for the proper balance between material and formal constraints, this chapter describes a pedagogical approach that transforms the education of future architects through a 'form-finding' method, allowing the material to accommodate itself to form and celebrate its own nature. To enhance pedagogical improvement of foundational studies in architecture and further explore this pedagogy based on form-finding in early design education, this chapter also presents the challenges to integrating materiality within the design process, as derived from the incorporation of experimental form-finding methods into early-stage design.


2012 ◽  
Vol 3 (1) ◽  
pp. 21-30
Author(s):  
Jean Damascène Mazimpaka

Spatial databases form the foundation for a Spatial Data Infrastructure (SDI). For this, a spatial database should be methodically developed to accommodate its role in SDI. It is desirable to have an approach to spatial database development that considers maintenance from the early stage of database design and in a flexible way. Moreover, there is a lack of a mechanism to capture topological relations of spatial objects during the design process. This paper presents an approach that integrates maintenance of topological integrity constraints into the whole spatial database development cycle. The approach is based on the concept of Abstract Data Types. A number of topological classes have been identified and modelling primitives developed for them. Topological integrity constraints are embedded into maintenance functions associated with the topological classes. A semi-automatic transformation process has been developed following the principles of Model Driven Architecture to simplify the design process.


2019 ◽  
Vol 13 ◽  
Author(s):  
Ning Tan ◽  
Zhenglong Sun ◽  
Rajesh Elara Mohan ◽  
Nishann Brahmananthan ◽  
Srinivasan Venkataraman ◽  
...  

Author(s):  
Nette Schultz ◽  
Lene Sørensen ◽  
Dan Saugstrup

This chapter presents and discusses a new design framework for involving users at an early stage in a mobile ICT development project. A user-centered design process, in which participatory design principles are combined with creativity techniques, is used in order to create scenarios as a communication tool between users and system designers. The theoretical basis for the framework is described, leading to a new participatory design and creativity framework. Empirical insight into how the framework has been developed and used in practice is presented based on the experiences and results from a large ICT development project within the ?eld of mobile communication. Finally, the value of applying creativity as part of a participatory design process is discussed.


Sign in / Sign up

Export Citation Format

Share Document