Electric Vehicle Battery Simulation: How Electrode Porosity and Thickness Impact Cost and Performance

2021 ◽  
Author(s):  
Yixin Zhao ◽  
Sara Behdad

Abstract Lithium-ion batteries almost exclusively power today’s electric vehicles (EVs). Cutting battery costs is crucial to the promotion of EVs. This paper aims to develop potential solutions to lower the cost and improve battery performance by investigating its design variables: positive electrode porosity and thickness. The open-access lithium-ion battery design and cost model (BatPac) from the Argonne National Laboratory of the United States Department of Energy, has been used for the analyses. Six pouch battery systems with different positive materials are compared in this study (LMO, LFP, NMC 532/LMO, NMC 622, NMC 811, and NCA). Despite their higher positive active material price, nickel-rich batteries (NMC 622, NMC 811, and NCA) present a cheaper total pack cost per kilowatt-hour than other batteries. The higher thickness and lower porosity can reduce the battery cost, enhance the specific energy, lower the battery mass but increase the performance instability. The reliability of the results in this study is proven by comparing estimated and actual commercial EV battery parameters. In addition to the positive electrode thickness and porosity, six other factors that affect the battery’s cost and performance have been discussed. They include energy storage, negative electrode porosity, separator thickness and porosity, and negative and positive current collector thickness.

Author(s):  
H. Shah ◽  
R. Latorre ◽  
G. Raspopin ◽  
J. Sparrow

The United States Department of Energy, through the Pacific Northwest National Laboratory (PNNL), provides management and technical support for the International Nuclear Safety Program (INSP) to improve the safety level of VVER-1000 nuclear power plants in Central and Eastern Europe.


Author(s):  
Mary D. McDermott ◽  
Charles D. Griffin ◽  
Daniel K. Baird ◽  
Carl E. Baily ◽  
John A. Michelbacher ◽  
...  

The Experimental Breeder Reactor - II (EBR-II) at Argonne National Laboratory - West (ANL-W) was shutdown in September 1994 as mandated by the United States Department of Energy. Located in eastern Idaho, this sodium-cooled reactor had been in service since 1964, and was a test facility for fuels development, materials irradiation, system and control theory tests, and hardware development. The EBR-II termination activities began in October 1994, with the reactor being maintained in an industrially and radiologically safe condition for decommissioning. With the shutdown of EBR-II, its sodium coolant became a waste necessitating its reaction to a disposal form. A Sodium Process Facility (SPF), designed to convert sodium to 50 wt% sodium hydroxide, existed at the ANL-W site, but had never been operated. The SPF was upgraded to current standards and codes, and then modified in 1998 to convert the sodium to 70 wt% sodium hydroxide, a substance that solidifies at 65°C (150°F) and is acceptable for burial as low level radioactive waste in Idaho. In December 1998, the SPF began operations. Working with sodium and highly concentrated sodium hydroxide presented some unique operating and maintenance conditions. Several lessons were learned throughout the operating period. Processing of the 330 m3 (87,000 gallons) of EBR-II primary sodium, 50 m3 (13,000 gallons) of EBR-II secondary sodium, and 290 m3 (77,000 gallons) of Fermi-1 primary sodium was successfully completed in March 2001, ahead of schedule and within budget.


Author(s):  
Nicholas Klymyshyn ◽  
Pavlo Ivanusa ◽  
Kevin Kadooka ◽  
Casey Spitz

Abstract In 2017, the United States Department of Energy (DOE) collaborated with Spanish and Korean organizations to perform a multimodal transportation test to measure shock and vibration loads imparted to used nuclear fuel (UNF) assemblies. This test used real fuel assembly components containing surrogate fuel mass to approximate the response characteristics of real, irradiated used nuclear fuel. Pacific Northwest National Laboratory was part of the test team and used the data collected during this test to validate numerical models needed to predict the response of real used nuclear fuel in other transportation configurations. This paper summarizes the modeling work and identifies lessons learned related to the modeling and analysis methodology. The modeling includes railcar dynamics using the NUCARS software code and explicit dynamic finite element modeling of used nuclear fuel cladding in LS-DYNA. The NUCARS models were validated against railcar dynamics data collected during captive track testing at the Federal Railroad Administration’s Transportation Technology Center in Pueblo, CO. The LS-DYNA models of the fuel cladding were validated against strain gage data collected throughout the test campaign. One of the key results of this work was an assessment of fuel cladding fatigue, and the methods used to calculate fatigue are detailed in this paper. The validated models and analysis methodologies described in this paper will be applied to evaluate future UNF transportation systems.


Author(s):  
Pavlin Groudev ◽  
Malinka Pavlova

This paper provides a discussion of various RELAP5 parameters calculated for the investigation of the nuclear power reactor parameter behavior in case of switching on one main coolant pump (MCP) when the other three MCPs are in operation. The reference power plant for this analysis is Unit 6 at the Kozloduy Nuclear Power Plant (NPP) site. Operational data from Kozloduy NPP have been used for the purpose of assessing how the RELAP5 model compares against plant data. During the plant-commissioning phase at Kozloduy NPP Unit 6 a number of experiments have been performed. One of them is switching on MCP when the other three MCPs are in operation. The event is characterized by rapid increase in the flow through the core resulting in a coolant temperature decrease, which leads to insertion of positive reactivity due to the modeled feedback mechanisms. This investigation has been conducted by Bulgarian and Russian specialists on the stage when the reactor power was at 75% of the nominal level. The purpose of the experiment was the complete testing of reliability of all power plant equipment, testing the reliability of the main regulators and defining a jump of the neutron reactor power in case of switching on of one main coolant pump. The Institute for Nuclear Research and Nuclear Energy - Bulgarian Academy of Sciences (INRNE-BAS), Sofia, and Kozloduy NPP have been developing a RELAP5/MOD3.2 model for Kozloduy NPP VVER-1000 for investigation of operational occurrences, abnormal events, and design basis scenarios. This investigation is a process that compares the analytical results obtained by the RELAP5 computer model of the VVER-1000 against the experimental transient data received from the Kozloduy NPP Unit 6. The comparisons between the RELAP5 results and the test data indicate good agreement. This report was possible through the participation of leading specialists from Kozloduy NPP and with the support of Argonne National Laboratory, under the International Nuclear Safety Program (INSP) of the United States Department of Energy.


Author(s):  
Stephen M. Hess ◽  
Nam Dinh ◽  
John P. Gaertner ◽  
Ronaldo Szilard

The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system’s “loading” and its “capacity”, plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons.


Nano Research ◽  
2021 ◽  
Author(s):  
Qiang Guo ◽  
Wei Deng ◽  
Shengjie Xia ◽  
Zibo Zhang ◽  
Fei Zhao ◽  
...  

AbstractUncontrollable dendrite growth resulting from the non-uniform lithium ion (Li+) flux and volume expansion in lithium metal (Li) negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries. Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li+ flux, the effective interaction distance between lithium ions and N-containing groups should be relatively small (down to nanometer scale) according to the Debye length law. Thus, it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li+ flux. In this work, porous carbon nitride microspheres (PCNMs) with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano- and micrometer scales on the Cu/Li foil. Physically, the three-dimensional (3D) porous framework is favorable for absorbing volume changes and guiding Li growth. Chemically, this coating layer can render a suitable interaction distance to effectively homogenize the Li+ flux and contribute to establishing a robust and stable solid electrolyte interphase (SEI) layer with Li-F, Li-N, and Li-O-rich contents based on the Debye length law. Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating, resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li‖Cu and the Li‖Li symmetric cells. Meanwhile, a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of ∼ 80% after more than 200 cycles at 1 C and achieved a remarkable rate capability. The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained ∼ 73% of the initial capacity after 150 cycles at 0.2 C.


Author(s):  
D. King ◽  
G. Rochau ◽  
D. Oscar ◽  
C. Morrow ◽  
P. Tsvetkov ◽  
...  

The United States Department of Energy, Nuclear Energy Research Initiative (NERI) Direct Energy Conversion Proof of Principle (DECPOP) project has as its goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without an intermediate thermal process. A prior Direct Energy Conversion (DEC) project [1] has been completed and indicates that a viable direct energy device is possible if several technological issues can be overcome. The DECPOP program is focusing on two of the issues: charged particle steering and high voltage hold-off. This paper reports on the progress of the DECPOP project. Two prototype concepts are under development: a Fission Electric Cell using magnetic insulation and a Fission Fragment Magnetic Collimator using magnetic fields to direct fission fragments to collectors. Included in this paper are a short project description, an abbreviated summary of the work completed to date, a description of ongoing and future project activities, and a discussion of the potential for future research and development.


Sign in / Sign up

Export Citation Format

Share Document