A Comparison of Flashover Theories

Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract In structural fires, flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. Major parameters affecting flashover are fire growth rate, ventilation opening area, and room area. A comparison of flashover theories is undertaken using the Thomas, Babrauskas and the FASTLite theories, concentrating on the similarities and differences between the theories in their assessment of the major parameters affecting flashover.

Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract Flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. The objective of the present contribution is to calculate the development of flashover in a typical single room fire, and show the effect of ten key parameters on the time required to reach flashover conditions. It is found that the major parameters affecting flashover are fire growth rate, ventilation opening area, and room area.


Author(s):  
David G. Lilley

Abstract Information and calculations are given for estimating fire growth in structural fires. Heat release rates from flames, fire growth, ignition of nearby items, and the possibility of flashover are all topics of concern. Empirical equations are given and calculations are exhibited to illustrated these aspects of structural fire behavior.


2000 ◽  
Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract The ultimate goal of this study is to improve scientific understanding of fire behavior leading to flashover in structural fires. This document summarizes important information in five topic areas: burning rates, radiant ignition, fire spread rates, ventilation limit imposed by size of opening, and flashover criteria. These are the main components related to the scientific understanding of the fire growth and flashover problem involved in real-world structural fires. Within each topic area, there are four subsections dealing with background, theory, comments, and references. Main components of the study are to develop improved mathematical simulations so as to improve the accuracy of theoretical calculation and to develop and extend the range of knowledge and modeling capability so as to extend the range of available experimental data.


Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

The development of the fire analytical modeling has accelerated over the last 30 years. As a result, fire modeling can often be used to appraise the effectiveness of the protective measures proposed when one designs a building. Fire behavior is extremely important in fire protection engineering and building design engineering. The ultimate goal of modeling studies is to improve scientific and technical understanding of fire behavior leading to flashover in structural fires. The zone modeling approach to multi-room structural fire modeling is emphasized in this study. This paper also summarizes the theory and methodology of the CFAST (Consolidated Model of Fire Growth and Smoke Transport) model, and its simpler variant the FASTLite model, which are zone type approaches being widely used by the authors. Studies of this type assist in the understanding of structural fires, and the development of computer modeling studies, and assessment of their predictive capability.


Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract The ultimate goal of this study is to improve scientific understanding of fire behavior leading to flashover in structural fires. This document summarizes important information in five topic areas: burning rates, radiant ignition, fire spread rates, ventilation limit imposed by size of opening, and flashover criteria. These are the main components related to the scientific understanding of the fire growth and flashover problem involved in real-world structural fires. Within each topic area, there are four subsections dealing with background, theory, comments, and references. Main components of the study are to develop improved mathematical simulations so as to improve the accuracy of theoretical calculation and to develop and extend the range of knowledge and modeling capability so as to extend the range of available experimental data.


1980 ◽  
Vol 38 ◽  
pp. 159-171 ◽  
Author(s):  
P.H. Thomas ◽  
M.L. Bullen ◽  
J.G. Quintiere ◽  
B.J. McCaffrey
Keyword(s):  

2022 ◽  
Vol 304 ◽  
pp. 114255
Author(s):  
Catherine Airey-Lauvaux ◽  
Andrew D. Pierce ◽  
Carl N. Skinner ◽  
Alan H. Taylor

2011 ◽  
Vol 71-78 ◽  
pp. 3729-3732
Author(s):  
Ming Zhou ◽  
Zhi Guo Xie ◽  
Xin Tang Wang

The computational model of numerical analysis of a suspended pre-stressed steel reticulated shell subjected to fire load is established with using the software Marc. Based on the model presented here, numerical analysis of thermal response and structural response of the pre-stressed steel structure are computed. The different space height and different rise-span ratio are considered for analysis of response temperature, displacements and stresses of the pre-stressed lattice shell under fire for one fire source. It is also shown that displacement of the node right above the inner cable is the maximum among the four nodes presented here as the fire source is located at the position right below the second-ring cable of the structure. It is concluded that the influence degree of space height of the structure on the fire response of the structure is not great, but rise-span ratio has obvious and great effect on displacements and stresses of the pre-stressed steel structure with large span in fire.


Sign in / Sign up

Export Citation Format

Share Document