Review of Basic Models in Fire Dynamics

2000 ◽  
Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract The ultimate goal of this study is to improve scientific understanding of fire behavior leading to flashover in structural fires. This document summarizes important information in five topic areas: burning rates, radiant ignition, fire spread rates, ventilation limit imposed by size of opening, and flashover criteria. These are the main components related to the scientific understanding of the fire growth and flashover problem involved in real-world structural fires. Within each topic area, there are four subsections dealing with background, theory, comments, and references. Main components of the study are to develop improved mathematical simulations so as to improve the accuracy of theoretical calculation and to develop and extend the range of knowledge and modeling capability so as to extend the range of available experimental data.

Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract The ultimate goal of this study is to improve scientific understanding of fire behavior leading to flashover in structural fires. This document summarizes important information in five topic areas: burning rates, radiant ignition, fire spread rates, ventilation limit imposed by size of opening, and flashover criteria. These are the main components related to the scientific understanding of the fire growth and flashover problem involved in real-world structural fires. Within each topic area, there are four subsections dealing with background, theory, comments, and references. Main components of the study are to develop improved mathematical simulations so as to improve the accuracy of theoretical calculation and to develop and extend the range of knowledge and modeling capability so as to extend the range of available experimental data.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Mark A. Finney ◽  
Sara S. McAllister

The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 18 ◽  
Author(s):  
Ginny Marshall ◽  
Dan Thompson ◽  
Kerry Anderson ◽  
Brian Simpson ◽  
Rodman Linn ◽  
...  

Current methods of predicting fire spread in Canadian forests are suited to large wildfires that spread through natural forests. Recently, the use of mechanical and thinning treatments of forests in the wildland-urban interface of Canada has increased. To assist in community wildfire protection planning in forests not covered by existing operational fire spread models, we use FIRETEC to simulate fire spread in lowland black spruce fuel structures, the most common tree stand in Canada. The simulated treatments included the mechanical mulching of strips, and larger, irregularly shaped areas. In all cases, the removal of fuel by mulch strips broke up the fuels, but also caused wind speed increases, so little decrease in fire spread rate was modelled. For large irregular clearings, the fire spread slowly through the mulched wood chips, and large decreases in fire spread and intensity were simulated. Furthermore, some treatments in the black spruce forest were found to be effective in decreasing the distance and/or density of firebrands. The simulations conducted can be used alongside experimental fires and documented wildfires to examine the effectiveness of differing fuel treatment options to alter multiple components of fire behavior.


Author(s):  
Hadj Miloua

Current study focuses to the application of an advanced physics-based (reaction–diffusion) fire behavior model to the fires spreading through surface vegetation such as grasslands and elevated vegetation such as trees present in forest stands. This model in three dimensions, called Wildland Fire Dynamics Simulator WFDS, is an extension, to vegetative fuels, of the structural FDS developed at NIST. For simplicity, the vegetation was assumed to be uniformly distributed in a tree crown represented by a well defined geometric shape. This work on will focus on predictions of thermal function such as the radiation heat transfer and and thermal function for diverse cases of spatial distribution of vegetation in forest stands. The influence of wind, climate characteristics and terrain topography will also be used to extend and validate the model. The results obtained provide a basis to carry out a risk analysis for fire spread in the studied vegetative fuels in the Mediterranean forest fires.


2017 ◽  
Vol 35 (5) ◽  
pp. 359-378 ◽  
Author(s):  
Albert Simeoni ◽  
Zachary C Owens ◽  
Erik W Christiansen ◽  
Abid Kemal ◽  
Michael Gallagher ◽  
...  

An experimental fire was conducted in 2016, in the Pinelands National Reserve of New Jersey, to assess the reliability of the fire pattern indicators used in wildland fire investigation. Objects were planted in the burn area to support the creation of the indicators. Fuel properties and environmental data were recorded. Video and infrared cameras were used to document the general fire behavior. This work represents the first step in the analysis by developing an experimental protocol suitable for field studies and describing how different fire indicators appeared in relation to fire behavior. Most of the micro- and macroscale indicators were assessed. The results show that some indicators are highly dependent on local fire conditions and may contradict the general fire spread. Overall, this study demonstrates that fire pattern indicators are a useful tool for fire investigators but that they must be interpreted through a general analysis of the fire behavior with a good understanding of fire dynamics.


Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract In structural fires, flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. Major parameters affecting flashover are fire growth rate, ventilation opening area, and room area. A comparison of flashover theories is undertaken using the Thomas, Babrauskas and the FASTLite theories, concentrating on the similarities and differences between the theories in their assessment of the major parameters affecting flashover.


Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract Temperature and smoke level predictions in several rooms of a structural fire are possible with a variety of available computer codes. The accuracy and applicability of the results is greatly enhanced though the comparison of the calculations with experimental data. Experimental work assists in understanding fire behavior in structural fires. Temperature measurements at different locations during a house fire provide necessary data for the development of mathematical models, which attempt to simulate the fire on a computer. In this paper, a small 46 square meter single-level house was the subject of a complete experimental burn, with temperature measurements and fire observations during the entire burn. The CFAST computer code (Consolidated Model of Fire Growth and Smoke Transport) can be used to calculate temperatures and smoke levels in the various rooms of the house during the burn. Five fire scenarios are considered in the simulation, with progressively increasing realism regarding the actual fire specification. It is seen that calculations with the most realistic fire simulation (permitting burning in all rooms during the course of the fire) are in very good agreement with the experimental data, with regard to rate of fire spread throughout the structure, and the accuracy of the calculations of flashover, temperatures and smoke levels in each of the rooms.


Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

The development of the fire analytical modeling has accelerated over the last 30 years. As a result, fire modeling can often be used to appraise the effectiveness of the protective measures proposed when one designs a building. Fire behavior is extremely important in fire protection engineering and building design engineering. The ultimate goal of modeling studies is to improve scientific and technical understanding of fire behavior leading to flashover in structural fires. The zone modeling approach to multi-room structural fire modeling is emphasized in this study. This paper also summarizes the theory and methodology of the CFAST (Consolidated Model of Fire Growth and Smoke Transport) model, and its simpler variant the FASTLite model, which are zone type approaches being widely used by the authors. Studies of this type assist in the understanding of structural fires, and the development of computer modeling studies, and assessment of their predictive capability.


CERNE ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 389-396 ◽  
Author(s):  
Benjamin Leonardo Alves White ◽  
Larissa Alves Secundo White ◽  
Genésio Tâmara Ribeiro ◽  
Rosemeri Melo Souza

ABSTRACT Knowing how a wildfire will behave is extremely important in order to assist in fire suppression and prevention operations. Since the 1940’s mathematical models to estimate how the fire will behave have been developed worldwide, however, none of them, until now, had their efficiency tested in Brazilian commercial eucalypt plantations nor in other vegetation types in the country. This study aims to verify the accuracy of the Rothermel (1972) fire spread model, the Byram (1959) flame length model, and the fire spread and length equations derived from the McArthur (1962) control burn meters. To meet these objectives, 105 experimental laboratory fires were done and their results compared with the predicted values from the models tested. The Rothermel and Byram models predicted better than McArthur’s, nevertheless, all of them underestimated the fire behavior aspects evaluated and were statistically different from the experimental data.


Sign in / Sign up

Export Citation Format

Share Document