Kinematic Synthesis of Spatial R-R Dyads for Path Following Revisited Using the Rotation Matrix Approach

Author(s):  
Venkat Krovi ◽  
G. K. Ananthasuresh ◽  
Vijay Kumar

Abstract We revisit the dimensional synthesis of a spatial two-link, two revolute-jointed serial chain for path following applications, focussing on the systematic development of the design equations and their analytic solution for the three precision point synthesis problem. The kinematic design equations are obtained from the equations of loop-closure for end-effector position in rotation-matrix/vector form at the three precision points. These design equations form a rank-deficient linear system in the link-vector components. The nullspace of the rank deficient linear system is then deduced analytically and interpreted geometrically. Tools from linear algebra are applied to systematically create the auxiliary conditions required for synthesis and to verify consistency. An analytic procedure for obtaining the link-vector components is then developed after a suitable selection of free choices. Optimization over the free choices is possible to permit the matching of additional criteria and explored further. Examples of the design of optimal two-link coupled spatial R-R dyads are presented where the end-effector interpolates three positions exactly and closely approximates an entire desired path.

1999 ◽  
Vol 123 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Venkat Krovi ◽  
G. K. Ananthasuresh ◽  
Vijay Kumar

The dimensional synthesis of a spatial two revolute jointed dyad for path following tasks with applications to coupled serial chain mechanisms is presented. The precision point synthesis equations obtained using the rotation matrix approach form a rank-deficient linear system in the link-vector components. The nullspace of this rank-deficient linear system is derived analytically and interpreted geometrically. The nullspace vectors lead to the specification of additional constraints via the so-called auxiliary equations and to the solution of the linear system of equations. The geometry also allows the derivation of a closed form solution for the three design position problem. Finally, optimal path following by coupled R-R dyads is achieved by optimization over the free choice variables.


Author(s):  
Venkat Krovi ◽  
G. K. Ananthasuresh ◽  
Vijay Kumar

Abstract We address the synthesis of serial chain spatial mechanisms with revolute joints in which the rotations about the joints are coupled via cables and pulleys. Such coupled serial chain mechanisms offer a middle ground between the more versatile and compact serial chains and the simpler closed chains by combining some of the advantages of both types of systems. In particular, we focus on the synthesis of single degree-of-freedom, coupled serial chains with two revolute joints. We derive precision point synthesis equations for two precision points by combining the loop closure equations with the necessary geometric constraints in terms of the unknown mechanism parameters. This system of equations can now be solved linearly for the link vectors after a suitable selection of free choices. We optimize over the free choices to generate an end effector trajectory that closely approximates a desired end effector trajectory for motion generation and path following applications.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Alba Perez-Gracia

The dimensional synthesis of spatial chains for a prescribed set of positions can be applied to the design of parallel robots by joining the solutions of each serial chain at the end-effector. This design method does not provide with the knowledge about the trajectory between task positions and, in some cases, may yield a system with negative mobility. These problems can be avoided for some overconstrained but movable linkages if the finite-screw system associated with the motion of the linkage is known. The finite-screw system defining the motion of the robot is generated by a set of screws, which can be related to the set of finite task positions traditionally used in the synthesis theory. The interest of this paper lies in presenting a method to define the whole workspace of the linkage as the input task for the exact dimensional synthesis problem. This method is applied to the spatial RPRP closed linkage, for which one solution exists.


2003 ◽  
Vol 125 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Han Sung Kim ◽  
Lung-Wen Tsai

This paper presents the design of spatial 3-RPS parallel manipulators from dimensional synthesis point of view. Since a spatial 3-RPS manipulator has only 3 degrees of freedom, its end effector cannot be positioned arbitrarily in space. It is shown that at most six positions and orientations of the moving platform can be prescribed at will and, given six prescribed positions, there are at most ten RPS chains that can be used to construct up to 120 manipulators. Further, solution methods for fewer than six prescribed positions are also described.


Author(s):  
Gim Song Soh ◽  
Fangtian Ying

This paper details the dimensional synthesis for the rigid body guidance of planar eight-bar linkages that could be driven by a prismatic joint at its base. We show how two RR cranks can be added to a planar parallel robot formed by a PRR and 3R serial chain to guide its end-effector through a set of five task poses. This procedure is useful for designers who require the choice of ground pivot locations. The results are eight different types of one-degree of freedom planar eight-bar linkages. We demonstrate the design process with the design of a multifunctional wheelchair that could transform its structure between a self-propelled wheelchair and a walking guide.


2005 ◽  
Vol 127 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Xichun Nie ◽  
Venkat Krovi

Single degree-of-freedom coupled serial chain (SDCSC) mechanisms are a class of mechanisms that can be realized by coupling successive joint rotations of a serial chain linkage, by way of gears or cable-pulley drives. Such mechanisms combine the benefits of single degree-of-freedom design and control with the anthropomorphic workspace of serial chains. Our interest is in creating articulated manipulation-assistive aids based on the SDCSC configuration to work passively in cooperation with the human operator or to serve as a low-cost automation solution. However, as single-degree-of-freedom systems, such SDCSC-configuration manipulators need to be designed specific to a given task. In this paper, we investigate the development of a synthesis scheme, leveraging tools from Fourier analysis and optimization, to permit the end-effectors of such manipulators to closely approximate desired closed planar paths. In particular, we note that the forward kinematics equations take the form of a finite trigonometric series in terms of the input crank rotations. The proposed Fourier-based synthesis method exploits this special structure to achieve the combined number and dimensional synthesis of SDCSC-configuration manipulators for closed-loop planar path-following tasks. Representative examples illustrate the application of this method for tracing candidate square and rectangular paths. Emphasis is also placed on conversion of computational results into physically realizable mechanism designs.


Author(s):  
A Perez-Gracia ◽  
J M McCarthy

This article presents a formulation of the design equations for a spatial serial chain that uses the Clifford algebra exponential form of its kinematics equations. This is the even Clifford algebra C+( P3), known as dual quaternions. These equations define the position and orientation of the end effector in terms of rotations or translations about or along the joint axes of the chain. Because the coordinates of these axes appear explicitly, specifying a set of task positions these equations can be solved to determine the location of the joints. At the same time, joint parameters or certain dimensions are specified to ensure that the resulting robotic system has specific features.


2002 ◽  
Vol 124 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Venkat Krovi ◽  
G. K. Ananthasuresh ◽  
Vijay Kumar

Single Degree-of-freedom Coupled Serial Chain (SDCSC) mechanisms form a novel class of modular and compact mechanisms with a single degree-of-freedom, suitable for a number of manipulation tasks. Such SDCSC mechanisms take advantage of the hardware constraints between the articulations of a serial-chain linkage, created using gear-trains or belt/pulley drives, to guide the end-effector motions and forces. In this paper, we examine the dimensional synthesis of such SDCSC mechanisms to perform desired planar manipulation tasks, taking into account task specifications on both end-effector motions and forces. Our solution approach combines precision point synthesis with optimization to realize optimal mechanisms, which satisfy the design specifications exactly at the selected precision points and approximate them in the least-squares sense elsewhere along a specified trajectory. The designed mechanisms can guide a rigid body through several positions while supporting arbitrarily specified external loads. Furthermore, torsional springs are added at the joints to reduce the overall actuation requirements and to enhance the task performance. Examples from the kinematic and the kinetostatic synthesis of planar SDCSC mechanisms are presented to highlight the benefits.


Author(s):  
Alba Perez ◽  
J. M. McCarthy

This paper presents the kinematic synthesis of a CRR serial chain. This is a four-degree-of-freedom chain constructed from a cylindric joint and two revolute joints in series. The design equations for this chain are obtained from the dual quaternion kinematics equations evaluated at a specified set of task positions. In this case, we find that the chain is completely defined by seven task positions. Furthermore, our solution of these equations has yielded 52 candidate designs, so far; there may be more. This synthesis methodology shows promise for the design of constrained serial chains.


2015 ◽  
Vol 39 (3) ◽  
pp. 637-646
Author(s):  
Ren-Chung Soong

A hybrid-driven five-bar linkage mechanism with one input cycle corresponding to two output cycles is presented. The proposed linkage mechanism is driven by a constant-speed motor and a linear motor, respectively. The output link can generate two same required output cycles during a single input cycle, while the rotational input link rotates with a constant angular speed, and the linear input link follows a reciprocating motion along a specified linear guide fixed on the rotational input link. The configuration, displacement relationship between the input and output links, and conditions of mobility of this proposed mechanism were studied, and a kinematic analysis was performed. The selection of the instantaneous motion trajectory of the linear input link and an optimal dimensional synthesis are also described. An example is provided to verify the feasibility and effectiveness of this methodology.


Sign in / Sign up

Export Citation Format

Share Document