Identification of Phenotypic State Transition Probabilities in Living Cells

Author(s):  
Waleed A. Farahat ◽  
H. Harry Asada

Living cells stochastically switch their phenotypic states in response to environmental cues to maintain persistence and viability. Estimating the state transition probabilities from biological observations of cell populations gives valuable insight to the underlying processes, and gives insights as to how the transition statistics are influenced by external factors. In this work, we present two Bayesian estimation approaches. The first is applicable when individual cell state trajectories are observed. The second approach is applicable when only aggregate population statistics are available. Estimation of transition probabilities when individual cell state trajectories are available is a straightforward problem, whereas estimation from only aggregate statistics can be computationally expensive. In the latter case, we present an algorithm that relies on three key ideas to cut down computational time: i) approximating high-dimensional multinomial distributions with multi-variate Gaussians, ii) employing Monte-Carlo techniques to efficiently integrate over high dimensional spaces, and iii) explicitly incorporating sampling constraints by computing lower dimensional distributions over the constrained variable. Simulation results demonstrate the viability of the algorithm.

2018 ◽  
Author(s):  
Jiajun Zhang ◽  
Qing Nie ◽  
Tianshou Zhou

AbstractCell fate decisions play a pivotal role in development but technologies for dissecting them are limited. We developed a multifunction new method, Topographer to construct a ‘quantitative’ Waddington’s landscape of single-cell transcriptomic data. This method is able to identify complex cell-state transition trajectories and to estimate complex cell-type dynamics characterized by fate and transition probabilities. It also infers both marker gene networks and their dynamic changes as well as dynamic characteristics of transcriptional bursting along the cell-state transition trajectories. Applying this method to single-cell RNA-seq data on the differentiation of primary human myoblasts, we not only identified three known cell types but also estimated both their fate probabilities and transition probabilities among them. We found that the percent of genes expressed in a bursty manner is significantly higher at (or near) the branch point (∼97%) than before or after branch (below 80%), and that both gene-gene and cell-cell correlation degrees are apparently lower near the branch point than away from the branching. Topographer allows revealing of cell fate mechanisms in a coherent way at three scales: cell lineage (macroscopic), gene network (mesoscopic) and gene expression (microscopic).


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 645
Author(s):  
Muhammad Farooq ◽  
Sehrish Sarfraz ◽  
Christophe Chesneau ◽  
Mahmood Ul Hassan ◽  
Muhammad Ali Raza ◽  
...  

Expectiles have gained considerable attention in recent years due to wide applications in many areas. In this study, the k-nearest neighbours approach, together with the asymmetric least squares loss function, called ex-kNN, is proposed for computing expectiles. Firstly, the effect of various distance measures on ex-kNN in terms of test error and computational time is evaluated. It is found that Canberra, Lorentzian, and Soergel distance measures lead to minimum test error, whereas Euclidean, Canberra, and Average of (L1,L∞) lead to a low computational cost. Secondly, the performance of ex-kNN is compared with existing packages er-boost and ex-svm for computing expectiles that are based on nine real life examples. Depending on the nature of data, the ex-kNN showed two to 10 times better performance than er-boost and comparable performance with ex-svm regarding test error. Computationally, the ex-kNN is found two to five times faster than ex-svm and much faster than er-boost, particularly, in the case of high dimensional data.


Author(s):  
Ajay Jasra ◽  
Maria De Iorio ◽  
Marc Chadeau-Hyam

In this paper, we consider a simulation technique for stochastic trees. One of the most important areas in computational genetics is the calculation and subsequent maximization of the likelihood function associated with such models. This typically consists of using importance sampling and sequential Monte Carlo techniques. The approach proceeds by simulating the tree, backward in time from observed data, to a most recent common ancestor. However, in many cases, the computational time and variance of estimators are often too high to make standard approaches useful. In this paper, we propose to stop the simulation, subsequently yielding biased estimates of the likelihood surface. The bias is investigated from a theoretical point of view. Results from simulation studies are also given to investigate the balance between loss of accuracy, saving in computing time and variance reduction.


Author(s):  
Jesper Kristensen ◽  
Isaac Asher ◽  
Liping Wang

Gaussian Process (GP) regression is a well-established probabilistic meta-modeling and data analysis tool. The posterior distribution of the GP parameters can be estimated using, e.g., Markov Chain Monte Carlo (MCMC). The ability to make predictions is a key aspect of using such surrogate models. To make a GP prediction, the MCMC chain as well as the training data are required. For some applications, GP predictions can require too much computational time and/or memory, especially for many training data points. This motivates the present work to represent the GP in an equivalent polynomial (or other global functional) form called a portable GP. The portable GP inherits many benefits of the GP including feature ranking via Sobol indices, robust fitting to non-linear and high-dimensional data, accurate uncertainty estimates, etc. The framework expands the GP in a high-dimensional model representation (HDMR). After fitting each HDMR basis function with a polynomial, they are all added together to form the portable GP. A ranking of which basis functions to use in the fitting process is automatically provided via Sobol indices. The uncertainty from the fitting process can be propagated to the final GP polynomial estimate. In applications where speed and accuracy are paramount, spline fits to the basis functions give very good results. Finally, portable BHM provides an alternative set of assumptions with regards to extrapolation behavior which may be more appropriate than the assumptions inherent in GPs.


2018 ◽  
Vol 24 (4) ◽  
pp. 225-247 ◽  
Author(s):  
Xavier Warin

Abstract A new method based on nesting Monte Carlo is developed to solve high-dimensional semi-linear PDEs. Depending on the type of non-linearity, different schemes are proposed and theoretically studied: variance error are given and it is shown that the bias of the schemes can be controlled. The limitation of the method is that the maturity or the Lipschitz constants of the non-linearity should not be too high in order to avoid an explosion of the computational time. Many numerical results are given in high dimension for cases where analytical solutions are available or where some solutions can be computed by deep-learning methods.


2002 ◽  
Vol 17 (1-2) ◽  
pp. 27-36 ◽  
Author(s):  
Radovan Ilic ◽  
Darko Lalic ◽  
Srboljub Stankovic

This paper describes new Monte Carlo codes for proton transport simulations in complex geometrical forms and in materials of different composition. The SRNA codes were developed for three dimensional (3D) dose distribution calculation in proton therapy and dosimetry. The model of these codes is based on the theory of proton multiple scattering and a simple model of compound nucleus decay. The developed package consists of two codes: SRNA-2KG and SRNA-VOX. The first code simulates proton transport in combined geometry that can be described by planes and second order surfaces. The second one uses the voxelized geometry of material zones and is specifically adopted for the application of patient computer tomography data. Transition probabilities for both codes are given by the SRNADAT program. In this paper, we will present the models and algorithms of our programs, as well as the results of the numerical experiments we have carried out applying them, along with the results of proton transport simulation obtained through the PETRA and GEANT programs. The simulation of the proton beam characterization by means of the Multi-Layer Faraday Cup and spatial distribution of positron emitters obtained by our program indicate the imminent application of Monte Carlo techniques in clinical practice.


2017 ◽  
Author(s):  
Meng Amy Li ◽  
Paulo P Amaral ◽  
Priscilla Cheung ◽  
Jan H Bergmann ◽  
Masaki Kinoshita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document