Designing Network Motifs in Connected Vehicle Systems: Delay Effects and Stability

Author(s):  
Linjun Zhang ◽  
Gábor Orosz

Arising technologies in vehicle-to-vehicle (V2V) communication allow vehicles to obtain information about the motion of distant vehicles. Such information can be presented to the driver or incorporated in advanced autonomous cruise control (ACC) systems. In this paper, we investigate the effects of multi-vehicle communication on the dynamics of connected vehicle platoons and propose a motif-based approach that allows systematical analysis and design of such systems. We investigate the dynamics of simple motifs in the presence of communication delays, and show that long-distance communication can stabilize the uniform flow when the flow cannot be stabilized by nearest neighbor interactions. The results can be used for designing driver assist systems and communication-based cruise control systems.

Author(s):  
Jin I. Ge ◽  
Sergei S. Avedisov ◽  
Gábor Orosz

Wireless vehicle-to-vehicle communication technologies such as the dedicated short range communication (DSRC) may be used to assist drivers in sensing and responding to impalpable information such as the precise acceleration of vehicles ahead. In this paper, we investigate the impact of delayed acceleration feedback on traffic flow using a nonlinear car-following model. It is shown that acceleration feedback can improve the stability of uniform traffic flow, though excessive acceleration feedback leads to undesired high frequency oscillations. Additionally, time delays in the communication channel may shrink the stable domain by introducing mid-frequency oscillations. Finally, we show that one may stabilize vehicle platoons using delayed acceleration feedback even in cases when finite driver reaction time would destabilize the system. Our results may lead to more robust cruise control systems with increased driver comfort in connected vehicle environment.


Author(s):  
Wubing B. Qin ◽  
Gábor Orosz

To improve the ride quality in connected vehicle platoons, information about the motion of the leader can be transmitted using vehicle-to-vehicle (V2V) communication and such information can be incorporated in the controllers of the following vehicle. However, according to the current V2V standards, dedicated short range communication (DSRC) devices transmit information every 100 ms which introduces time delays into the control loops. In this paper we study the effects of these time delays on the dynamics of vehicle platoons subject to digital control and derive conditions for plant stability and string stability. It is shown that when the time delay exceeds a critical value, no gain combination can stabilize the system. Our results have important implications on connected vehicle design.


Author(s):  
Jianzhong Chen ◽  
Yang Zhou ◽  
Jing Li ◽  
Huan Liang ◽  
Zekai Lv ◽  
...  

In this paper, an improved multianticipative cooperative adaptive cruise control (CACC) model is proposed based on fully utilizing multivehicle information obtained by vehicle-to-vehicle communication. More flexible, effective and practical spacing strategy is embedded into the model. We design a new lane-changing rule for CACC vehicles on the freeway. The rule considers that CACC vehicles are more inclined to form a platoon for coordinated control. Furthermore, we investigate the effect of CACC vehicles on two-lane traffic flow. The results demonstrate that introducing CACC vehicles into mixed traffic and forming CACC platoon to cooperative control can improve traffic efficiency and enhance road capacity to a certain extent.


2020 ◽  
Vol 8 (1) ◽  
pp. 140-160
Author(s):  
Inka Trisna Dewi ◽  
Amang Sudarsono ◽  
Prima Kristalina ◽  
Mike Yuliana

One effort to secure vehicle-to-vehicle (V2V) communication is to use a symmetrical cryptographic scheme that requires the distribution of shared secret keys. To reduce attacks on key distribution, physical layer-based key formation schemes that utilize the characteristics of wireless channels have been implemented. However, existing schemes still produce a low bit formation rate (BFR) even though they can reach a low bit error rate (BER). Note that V2V communication requires a scheme with high BFR in order to fulfill its main goal of improving road safety. In this research, we propose a higher rate secret key formation (HRKF) scheme using received signal strength (RSS) as a source of random information. The focus of this research is to produce keys with high BFR without compromising BER. To reduce bit mismatch, we propose a polynomial regression method that can increase channel reciprocity. We also propose a fixed threshold quantization (FTQ) method to maintain the number of bits so that the BFR increases. The test results show that the HRKF scheme can increase BFR from 40% up to 100% compared to existing research schemes. To ensure the key cannot be guessed by the attacker, the HRKF scheme succeeds in producing a key that meets the randomness of the NIST test.


Author(s):  
Jinhua Tan ◽  
Xuqian Qin ◽  
Li Gong

Sand-dust environment affects drivers’ perceptions of surrounding traffic conditions, resulting in unsafe operations. From an ergonomics perspective, such adverse effects could be alleviated by environment control as well as the assistance of machines. Vehicle-to-vehicle (V2V) communication appears to be an important component of machines in future traffic systems, which could support the driving task. In order to explore what influences V2V communication would generate on traffic systems, this paper proposes a car-following model accounting for V2V communication in a sand-dust environment. The results indicate that V2V communication helps to reduce the fluctuations of acceleration, headway, and velocity, when a small perturbation is added to the traffic flow in sand-dust environment. If a vehicle in the traffic flow stops suddenly, the number of crumped vehicles decreases with V2V communication taken into account. Furthermore, the residual velocities of the crumped vehicles decrease, which means the severity of collision is suppressed. It is concluded that V2V communication can play an active role in the improvement of traffic safety in a sand-dust environment.


2013 ◽  
Vol 791-793 ◽  
pp. 1113-1116
Author(s):  
Yong Wang ◽  
Qiang Dou ◽  
Wei Peng ◽  
Zheng Hu Gong

Message ferry is a controllable mobile node equipped with long distance communication antennas and rechargeable energy, to collect data in sparse wireless networks and delivery it to the base station. The Energy-Constrained Ferry Route Design (ECFRD) Problem aims to schedule the ferry route when the energy of the ferry is not sufficient to access all the nodes in the network in one tour without charging, so as to minimize the total route length of the ferry. In this paper, we propose a simulated annealing based algorithm to solve the ECFRD problem. The experimental results show that the algorithm proposed in this paper can greatly reduce the total route length of the ferry, comparing the classic nearest neighbor algorithm.


2005 ◽  
Vol 16 (6) ◽  
pp. 1363-1373 ◽  
Author(s):  
M Heddebaut ◽  
J Rioult ◽  
J P Ghys ◽  
Ch Gransart ◽  
S Ambellouis

Sign in / Sign up

Export Citation Format

Share Document