Combined Input Shaping and Feedback Control of a Double-Pendulum System Subject to External Disturbances

Author(s):  
Robert Mar ◽  
Anurag Goyal ◽  
Vinh Nguyen ◽  
Tianle Yang ◽  
William Singhose

A control system combining input shaping and feedback is applied to a double-pendulum bridge crane subjected to external disturbances. The external disturbances represent naturally occurring forces, such as gusting winds. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections and disturbance-induced residual swing using the feedback control. Effects of parameters such as the mass ratio of the double-pendulum, suspension length ratio, and the traveled distance were studied via numerical simulation and hardware experiments. The controller effectively suppresses the disturbances and is robust to modeling uncertainties and task variations.

Author(s):  
Dooroo Kim ◽  
William Singhose

Oscillation of crane payloads makes it challenging to manipulate payloads quickly, accurately, and safely. The problem is compounded when the payload creates a double-pendulum effect. This paper evaluates an input-shaping control method for reducing double-pendulum oscillations. Human operator performance testing on a 10-ton industrial bridge crane is used to verify the effectiveness and robustness of the method. The tests required the operators to drive the crane numerous times over a period of eight days. Data from these experiments show that human operators perform manipulation tasks much faster and safer with the proposed control scheme. Furthermore, considerably less operator effort is required when input shaping is used to limit the oscillation. These experiments also show that significant learning occurred when operators did not have the aid of input shaping. However, the performance never approached that achieved with input shaping without any training. With input shaping enabled, only moderate learning occurred because operators were able to drive the crane near its theoretical limit during their first tests.


Author(s):  
Raymond Manning ◽  
Jeffrey Clement ◽  
Dooroo Kim ◽  
William Singhose

The large-amplitude and lightly-damped oscillation of crane payloads is detrimental to safe and efficient operation. The problem is further complicated when the payload creates a double-pendulum effect. Previous researches have shown that single-mode oscillations can be greatly reduced by properly shaping the inputs to the crane motors. This paper builds on previous developments by thoroughly describing the double-pendulum dynamic effects as a function of payload parameters and the crane configuration. Furthermore, an input-shaping control method is developed to suppress double-pendulum oscillations created by a payload with distributed-mass properties. Experiments performed on a 10-ton industrial bridge crane verify the effectiveness of the method. A critical aspect of the testing was human operator studies, wherein numerous operators utilized the input-shaping controller to perform manipulation tasks. The performance improvements provided by the input-shaping controller, as well as operator learning effects, are reported.


2011 ◽  
Vol 121-126 ◽  
pp. 2676-2680
Author(s):  
Ming Xiao Dong ◽  
Rui Chuan Li ◽  
Qin Zu Xu

A poorly designed control system can lead to excessive residual vibration and long setting time. This paper investigates the effect of input shaping on control efficiency. To perform this investigation, we design a PD controller combined with input shaping for an inertia plant. We then subject it to four standard types of inputs. The responses of the control systems are described by analytical expressions. The performances of PD control and PD combined with input-shaping control are thoroughly analyzed and compared. Simulation results show that PD feedback control enhanced with input shaping minimizes overshoot and setting time.


2021 ◽  
Vol 39 (3A) ◽  
pp. 355-369
Author(s):  
Dina H. Tohma ◽  
Ahmed K. Hamoudi

This work aims to study and apply the adaptive sliding mode controller (ASMC) for the pendulum system with the existence of the parameters uncertainty, external disturbances, and coulomb friction. The adaptive sliding mode controller has several features over the conventional sliding mode control method. Firstly, the magnitude of the control signal is reduced to the minimally acceptable level defined by special conditions concerned with ASMC algorithm. Secondly, the upper bounds of uncertainties are not necessary to be defined before starting the work. For this reason, the ASMC can be used successfully to control the pendulum system with minimum control effort. These properties of the ASMC are confirming graphically by the simulation results using MATLAB 2019. The ASMC achieves an asymptotically stable system better than the Classical Sliding Mode Controller (CSMC). The unwanted phenomenon is called “chattering", which is appearing in the control action signal. These drawback properties are suppressed by employing a saturation function. Finally, the comparison between the results of the ASMC and CSMC showed that ASMC is the better one.


Author(s):  
Wenming Nie ◽  
Huifeng Li ◽  
Ran Zhang ◽  
Bo Liu

The ascent trajectory tracking problem of a launch vehicle is investigated in this paper. To improve the conventional trajectory linearization method which usually omits the linearization errors, the extended state observer (ESO) is employed in this paper to timely estimate the total disturbance which consists of the external disturbances and the modeling uncertainties resulting from linearization error. It is proven that the proposed trajectory tracking controller can guarantee the desired performance despite both external disturbances and the modeling uncertainties. Moreover, compared with the conventional linearization control method, the proposed controller is shown to have much better performance of uncertainty rejection. Finally, the feasibility and performance of this controller are illuminated via simulation studies.


2015 ◽  
Vol 63 (4) ◽  
pp. 887-896 ◽  
Author(s):  
D. Qian ◽  
S. Tong ◽  
B. Yang ◽  
S. Lee

Abstract Overhead cranes are extensively employed but their performance suffers from the natural sway of payloads. Sometime, the sway exhibits double-pendulum motions. To suppress the motions, this paper investigates the design of simultaneous input-shaping-based fuzzy control for double-pendulum-type overhead cranes. The fuzzy control method is based on the single input-rule modules (SIRMs). Provided the all the system variables are measurable, the SIRMs fuzzy controller is designed at first. To improve the performance of the fuzzy controller, the simultaneous input shaper is adopted to shape the control command generated by the fuzzy controller. Compared with other two control methods, i.e., the SIRMs fuzzy control and the convolved input-shaping-based SIRMs fuzzy control, simulation results illustrate the feasibility, validity and robustness of the presented control method for the anti-swing control problem of double-pendulum-type overhead cranes.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Chutiphon Pukdeboon

This paper investigates the attitude stabilization problem of rigid spacecraft subject to actuator constraints, external disturbances, and attitude measurements only. An output feedback control framework with input saturation is proposed to solve this problem. The general saturation function is utilized in the proposed controller design and a unified control method is developed for the asymptotic stabilization of rigid spacecraft without velocity measurements. Asymptotic stability is proven by Lyapunov stability theory. Moreover, a new nonlinear disturbance observer is designed to compensate for external disturbances. Then, a composite controller is presented by combining a unified saturated output feedback control with a nonlinear disturbance observer. Desirable features of the proposed control scheme include the intuitive structure, robustness against external disturbances, avoidance of model information and velocity measurements, and ability to ensure that the actuator constraints are not violated. Finally, numerical simulations have been carried out to verify the effectiveness of the proposed control method.


2004 ◽  
Vol 127 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Joel Fortgang ◽  
William Singhose

Systems with flexible dynamics often vibrate due to external disturbances, as well as from changes in the reference command. Feedback control is an obvious choice to deal with these vibrations, but in many cases, it is insufficient or difficult to implement. A technique that does not rely on high performance feedback control is presented here. It utilizes a combination of vibration absorbers and input shapers. Vibration absorbers have been used extensively to reduce vibration from sinusoidal disturbances, but they can also be implemented to reduce the response from transient functions. Input shaping has proven beneficial for reducing vibration that is caused by changes in the reference command. However, input shaping does not deal with vibration excited by external disturbances. In this paper, vibration absorbers and input shapers are designed sequentially and concurrently to reduce vibration from both the reference command and from external disturbances. The usefulness of this approach is demonstrated through computer simulations and experimental results.


Sign in / Sign up

Export Citation Format

Share Document