Concurrent Design of Vibration Absorbers and Input Shapers

2004 ◽  
Vol 127 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Joel Fortgang ◽  
William Singhose

Systems with flexible dynamics often vibrate due to external disturbances, as well as from changes in the reference command. Feedback control is an obvious choice to deal with these vibrations, but in many cases, it is insufficient or difficult to implement. A technique that does not rely on high performance feedback control is presented here. It utilizes a combination of vibration absorbers and input shapers. Vibration absorbers have been used extensively to reduce vibration from sinusoidal disturbances, but they can also be implemented to reduce the response from transient functions. Input shaping has proven beneficial for reducing vibration that is caused by changes in the reference command. However, input shaping does not deal with vibration excited by external disturbances. In this paper, vibration absorbers and input shapers are designed sequentially and concurrently to reduce vibration from both the reference command and from external disturbances. The usefulness of this approach is demonstrated through computer simulations and experimental results.

2005 ◽  
Vol 127 (1) ◽  
pp. 160-163 ◽  
Author(s):  
Joel Fortgang ◽  
William Singhose

Mechanical systems with flexible dynamics often suffer from vibration induced by changes in the reference command or from external disturbances. The technique of adding a vibration absorber has proven useful at eliminating vibrations from external disturbances and rotational imbalances. Traditionally, vibration absorbers have been designed for systems subject to sinusoidal or random excitations. Here the applicability of vibration absorbers to systems with steplike changes in the reference command or similar disturbances is studied. This type of motion is more common in robotic applications. Here absorbers are designed using two methods; the first technique uses a weighting on peak overshoot and settling time to allow tradeoffs between the two performance criteria. The second simpler method utilizes an eigenvalue technique to predict the time constant. Both of these techniques provide the possibility of significant improvement in settling time. The performance of this absorber design strategies is compared with previously proposed vibration absorbers and experimental results verify its utility.


2008 ◽  
Vol 381-382 ◽  
pp. 493-496
Author(s):  
Sang Won Park ◽  
S.W. Hong ◽  
H.S. Choi ◽  
W.E. Singhose

Reducing residual vibration is very crucial to enhance the speed and precision of XY stages which are often employed by manufacturing/measuring machines. Input shaping is known to be a very effective tool for suppressing such residual vibration without introducing any complicated sensors and feedback control. This paper investigated the effects of input command discretization parameters in real-time input shaping, such as discretizing interval and duration time, on the dynamic performance of a XY stage equipped with servo motors. A simulation model is established to investigate the dynamic performance of the XY stage. In order to evaluate the real-time input shaping parameters on the performance of the XY stage, two fundamental input shaping schemes, ZV(zero vibration) and ZVD(zero vibration and derivative), are implemented and tested with the discretizing interval and duration time varied. The experimental results provide a strategy to gain better performance.


Author(s):  
Robert Mar ◽  
Anurag Goyal ◽  
Vinh Nguyen ◽  
Tianle Yang ◽  
William Singhose

A control system combining input shaping and feedback is applied to a double-pendulum bridge crane subjected to external disturbances. The external disturbances represent naturally occurring forces, such as gusting winds. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections and disturbance-induced residual swing using the feedback control. Effects of parameters such as the mass ratio of the double-pendulum, suspension length ratio, and the traveled distance were studied via numerical simulation and hardware experiments. The controller effectively suppresses the disturbances and is robust to modeling uncertainties and task variations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


Sign in / Sign up

Export Citation Format

Share Document