Uncertainty Bounding of CFRP Beams Towards Robust Control of Flexible Composite Structures

Author(s):  
Alexander H. Pesch ◽  
Tamunomiesiya LongJohn ◽  
Kristopher Wagner ◽  
Brian J. McAndrews

As composite materials are becoming increasingly applied in actively controlled flexible structures, the need for practical uncertainty bounding to capture the effect of normal manufacturing variations on their dynamic behavior is also increasing. Currently, there is a lack of quantification of manufacturing variation of composite materials cast in a robust control framework. This work presents a simple experimental study on a particular case of composite member. The modal parameters of a set of 12 unidirectional carbon fiber reinforce polymer beams are identified. A nominal finite element model is numerically fit to the average experimental natural frequencies and antiresonances. The model is augmented with real parametric uncertainties placed on the modal parameters. The bound on the uncertainties is found both deterministically, to capture all experimentally observed data, and stochastically using a predetermined confidence interval. The two uncertainty bounding approaches are compared through the resulting bound on the beam model frequency response. Also, simulations are conducted to compare possible time responses using the two uncertainty bounds. It is found that the utilized structure of parametric uncertainties is effective at capturing the experimentally observed behavior.

2011 ◽  
Vol 45 (8) ◽  
pp. 867-882 ◽  
Author(s):  
Nathan D. Flesher ◽  
Fu-Kuo Chang ◽  
Nageswara R. Janapala ◽  
J. Michael Starbuck

A dynamic crash model is developed and implemented to model the failure behavior and energy absorption of braided composite structures. Part I describes the development and theoretical foundation of a viscoplastic material model that captures the rate-dependent behavior present in braided composite materials. Part II presents the implementation of the model into a finite element model program and the experimental results for tubes crushed from quasi-static to 4000 mm/s rates used to verify the model. Energy absorption decreases sharply with an increase in crush rate, which is reflected in this model. Design concepts are also introduced to increase energy absorption in braided composites.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


2021 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Aleksander Muc

The main goal of building composite materials and structures is to provide appropriate a priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite materials can be designed in a different fashion to meet specific properties requirements.Nevertheless, it is necessary to be careful about the orientation, placement and sizes of different types of reinforcement. These issues should be solved by optimization, which, however, requires the construction of appropriate models. In the present paper we intend to discuss formulations of kinematic and constitutive relations and the possible application of homogenization methods. Then, 2D relations for multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange equations, through the application of the symbolic package Mathematica. The introduced form of the First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in searching for the global macroscopic optimal solutions. The information presented to readers is enriched by adding selected review papers, surveys and monographs in the area of composite structures.


2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


2021 ◽  
pp. 107754632110267
Author(s):  
Jiandong Huang ◽  
Xin Li ◽  
Jia Zhang ◽  
Yuantian Sun ◽  
Jiaolong Ren

The dynamic analysis has been successfully used to predict the pavement response based on the finite element modeling, during which the stiffness and mass matrices have been established well, whereas the method to determine the damping matrix based on Rayleigh damping is still under development. This article presents a novel method to determine the two parameters of the Rayleigh damping for dynamic modeling in pavement engineering. Based on the idealized shear beam model, a more reasonable method to calculate natural frequencies of different layers is proposed, by which the global damping matrix of the road pavement can be assembled. The least squares method is simplified and used to calculate the frequency-independent damping. The best-fit Rayleigh damping is obtained by only determining the natural frequencies of the two modal. Finite element model and in-situ field test subjected by the same falling weight deflectometer pulse loads are performed to validate the accuracy of this method. Good agreements are noted between simulation and field in-situ results demonstrating that this method can provide a more accurate approach for future finite element modeling and back-calculation.


1993 ◽  
Author(s):  
Robert W. Lashlee ◽  
Rajendra R. Damle ◽  
Vittal S. Rao ◽  
Frank J. Kern

Sign in / Sign up

Export Citation Format

Share Document