Energy-Efficient Adaptive Robust Control of Vector Thrust UAVs With Unknown Inertia Parameters

Author(s):  
Caiwu Ding ◽  
Lu Lu ◽  
Cong Wang

This paper proposes an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. We consider a novel vector thrust UAV with all propellers able to tilt about two perpendicular axes, so that the thrust force generated by each propeller is a fully controllable vector in 3D space, based on which an adaptive robust control is designed for accurate trajectory tracking in the presence of inertial parametric uncertainties and uncertain nonlinearities. Theoretically, the resulting controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities. In addition, in the presence of only parametric uncertainties, the controller achieves asymptotic output tracking. To resolve the redundancy in actuation, a thrust force optimization problem minimizing power consumption while achieving the desired body force wrench is formulated, and is shown to be convex with linear equality constraints. Simulation results are also presented to verify the proposed solution.

Author(s):  
Z. B. Xu ◽  
J. Y. Yao ◽  
Z. L. Dong ◽  
Y. Zheng

In this paper, an adaptive robust control for hydraulic actuators with disturbance estimation is proposed for a hydraulic system with mismatched generalized uncertainties (e.g., parameter derivations, external disturbances, and/or unmodeled dynamics), in which a finite time disturbance observer and an adaptive robust controller are synthesized via backstepping method. The finite time disturbance observer is designed to estimate the mismatched generalized uncertainties. The adaptive robust controller is designed to handle parametric uncertainties and stabilize the closed loop system. The proposed controller accounts for not only the parametric uncertainties, but also the mismatched generalized uncertainties. Furthermore, the controller theoretically guarantees a prescribed tracking transient performance and final tracking accuracy while achieving asymptotic tracking performance after a finite time T0, which is very important for high accuracy tracking control of hydraulic servo systems. Simulation results are obtained to verify the high performance nature of the proposed control strategy.


Author(s):  
Zhangbao Xu ◽  
Qingyun Liu ◽  
Xiaolei Hu

This paper studies a high-accuracy motion control method named output feedback adaptive robust control for a dc motor with uncertain nonlinearities and parametric uncertainties, which always exist in physical servo systems and deteriorate their tracking performance. As only position signal is measurable, a uniform robust exact differentiator (URED) for the unmeasurable states and adaptive control for the parametric uncertainties are integrated in the model compensation term; and the robust control is applied to handle uncertain nonlinearities and stabilize the system. Then, the stability of the closed-loop system is proved theoretically. Finally, simulation and experimental results are studied for a dc motor system to prove the control performance of the proposed control method.


2020 ◽  
Vol 10 (13) ◽  
pp. 4494 ◽  
Author(s):  
Lijun Feng ◽  
Hao Yan

This paper focuses on high performance adaptive robust position control of electro-hydraulic servo system. The main feature of the paper is the combination of adaptive robust algorithm with discrete disturbance estimation to cope with the parametric uncertainties, uncertain nonlinearities, and external disturbance in the hydraulic servo system. First of all, a mathematical model of the single-rod position control system is developed and a nonlinear adaptive robust controller is proposed using the backstepping design technique. Adaptive robust control is used to encompass the parametric uncertainties and uncertain nonlinearities. Subsequently, a discrete disturbance estimator is employed to compensate for the effect of strong external disturbance. Furthermore, a special Lyapunov function is formulated to handle unknown nonlinear parameters in the system state equations. Simulations are carried out, and the results validate the superior performance and robustness of the proposed method.


1992 ◽  
Vol 28 (8) ◽  
pp. 1016-1018
Author(s):  
Junichi IMURA ◽  
Toshiharu SUGIE ◽  
Tsuneo YOSHIKAWA

2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881151
Author(s):  
Zhang Wenhui ◽  
Li Hongsheng ◽  
Ye Xiaoping ◽  
Huang Jiacai ◽  
Huo Mingying

It is difficult to obtain a precise mathematical model of free-floating space robot for the uncertain factors, such as current measurement technology and external disturbance. Hence, a suitable solution would be an adaptive robust control method based on neural network is proposed for free-floating space robot. The dynamic model of free-floating space robot is established; a computed torque controller based on exact model is designed, and the controller can guarantee the stability of the system. However, in practice, the mathematical model of the system cannot be accurately obtained. Therefore, a neural network controller is proposed to approximate the unknown model in the system, so that the controller avoids dependence on mathematical models. The adaptive learning laws of weights are designed to realize online real-time adjustment. The adaptive robust controller is designed to suppress the external disturbance and compensate the approximation error and improve the robustness and control precision of the system. The stability of closed-loop system is proved based on Lyapunov theory. Simulations tests verify the effectiveness of the proposed control method and are of great significance to free-floating space robot.


2008 ◽  
Vol 2008 (0) ◽  
pp. _2A1-A06_1-_2A1-A06_4
Author(s):  
Shinichi SAGARA ◽  
Yuichiro Taira ◽  
Gaku Ohnishi ◽  
Masaharu Abe ◽  
Takashi Yatoh

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Zhipeng Huang ◽  
Yuepeng Xu ◽  
Wang Ren ◽  
Chengwei Fu ◽  
Ruikang Cao ◽  
...  

This paper takes the position control performance of pump-controlled hydraulic presses as the research object. The control methods are designed respectively for the two motion stages of rapid descent and slow descent of hydraulic presses in order to improve the control performance of the system. First of all, the accuracy model of the pump-controlled hydraulic presses position servo system (the pump-controlled hydraulic presses position servo system, which is called PCHPS) and its MATLAB/Simulink simulation platform are established. Based on the theoretical analysis and experimental data, the interference factors affecting the tracking accuracy and positioning accuracy of the PCHPS are analyzed. Then, an adaptive integral robust control (the adaptive integral robust control, which is called AIRC) for PCHPS is designed to reduce the influence of nonlinear factors on the system, and the effectiveness of the controller is verified by simulation. Finally, the position control experiment of PCHPS is designed, and the experimental results show that the AIRC can effectively reduce nonlinear factors such as unknown interference in the slow-down stage of the system. The positioning accuracy is raised to within 0.008 mm, which improves the process level of the hydraulic presses.


Author(s):  
Amit Mohanty ◽  
Bin Yao

In a general DIARC framework [13], the emphasis is always on the guaranteed transient performance and accurate trajectory tracking in the presence of uncertain nonlinearity and parametric uncertainties along with accurate parameter estimation for secondary purpose such as system health monitoring and prognosis. Need for accurate parameter estimation calls for the use of Least Square Estimation (LSE) type of algorithms for such a seamless integration of good tracking performance and accurate parameter estimation. This paper presents a physical model based integrated direct/indirect adaptive robust control (DIARC) strategy for a hydraulically actuated 3-DOF robotic arm. To avoid the need of acceleration feedback for DIARC back-stepping design, the property, that the adjoint matrix and the determinant of the inertial matrix could be linearly parameterized by certain suitably selected parameters is utilized. Unlike gradient-type parameter estimation law, which used overparamterization, there is no multiple estimation of the single parameter. Theoretically, the resulting controller is able to take into account not only the effect of parametric uncertainties coming from the payload and various hydraulic parameters but also the effect of uncertain nonlinearities. Furthermore, the proposed DIARC controller guarantees a prescribed output tracking transient performance and final tracking accuracy while achieving asymptotic output tracking in the presence of parametric uncertainties only. Simulation results based on a three degree-of-freedom (DOF) hydraulic robot arm (a scaled down version of an industrial back-hoe/excavator arm) are presented to illustrate the proposed control algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Pengchao Zhang

This paper presents a dynamic surface adaptive robust control method with disturbance observer for unmanned marine vehicles (UMV). It uses adaptive law to estimate and compensate the disturbance observer error. Dynamic surface is introduced to solve the “differential explosion” caused by the virtual control derivation in traditional backstepping method. The final controlled system is proved to be globally uniformly bounded based on Lyapunov stability theory. Simulation results illustrate the effectiveness of the proposed controller, which can realize the three-dimensional trajectory tracking for UMV with the systematic uncertainty and time-varying disturbances.


Sign in / Sign up

Export Citation Format

Share Document