scholarly journals Adaptive robust control for free-floating space robot with unknown uncertainty based on neural network

2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881151
Author(s):  
Zhang Wenhui ◽  
Li Hongsheng ◽  
Ye Xiaoping ◽  
Huang Jiacai ◽  
Huo Mingying

It is difficult to obtain a precise mathematical model of free-floating space robot for the uncertain factors, such as current measurement technology and external disturbance. Hence, a suitable solution would be an adaptive robust control method based on neural network is proposed for free-floating space robot. The dynamic model of free-floating space robot is established; a computed torque controller based on exact model is designed, and the controller can guarantee the stability of the system. However, in practice, the mathematical model of the system cannot be accurately obtained. Therefore, a neural network controller is proposed to approximate the unknown model in the system, so that the controller avoids dependence on mathematical models. The adaptive learning laws of weights are designed to realize online real-time adjustment. The adaptive robust controller is designed to suppress the external disturbance and compensate the approximation error and improve the robustness and control precision of the system. The stability of closed-loop system is proved based on Lyapunov theory. Simulations tests verify the effectiveness of the proposed control method and are of great significance to free-floating space robot.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jiazhi Li ◽  
Weicun Zhang ◽  
Quanmin Zhu

This study addresses the tracking control issue for n-link robotic manipulators with largely jumping parameters. Based on radial basis function neural networks (RBFNNs), we propose weighted multiple-model neural network adaptive control (WMNNAC) approach. To cover the variation ranges of the parameters, different models of robotic are constructed. Then, the corresponding local neural network controller is constructed, in which the neural network has been used to approximate the uncertainty part of the control law, and an adaptive observer is implemented to estimate the true external disturbance. The WMNNAC strategy with improved weighting algorithm is adopted to ensure the tracking performance of the robotic manipulator system when parameters jump largely. Through the Lyapunov stability theory and the method of virtual equivalent system (VES), the stability of the closed-loop system is proved. Finally, the simulation results of a two-link manipulator verify the feasibility and efficiency of the proposed WMNNAC strategy.


2013 ◽  
Vol 394 ◽  
pp. 393-397
Author(s):  
Jing Ma ◽  
Wen Hui Zhang ◽  
Zhi Hua Zhu

Neural network self-learning optimization PID control algorithm is put forward for free-floating space robot with flexible manipulators. Firstly, dynamics model of space flexible robot is established, then, neural network with good learning ability is used to approach non-linear system. Optimization algorithm of network weights is designed to speed up the learning speed and the adjustment velocity. Error function is offered by PID controller. The neural network self-learning PID control method can improve the control precision.


Author(s):  
Duc-Minh Nguyen ◽  
Van-Tiem Nguyen ◽  
Trong-Thang Nguyen

This article presents the sliding control method combined with the selfadjusting neural network to compensate for noise to improve the control system's quality for the two-wheel self-balancing robot. Firstly, the dynamic equations of the two-wheel self-balancing robot built by Euler–Lagrange is the basis for offering control laws with a neural network of noise compensation. After disturbance-compensating, the sliding mode controller is applied to control quickly the two-wheel self-balancing robot reached the desired position. The stability of the proposed system is proved based on the Lyapunov theory. Finally, the simulation results will confirm the effectiveness and correctness of the control method suggested by the authors.


2022 ◽  
pp. 107754632110421
Author(s):  
ShengChao Zhen ◽  
MuCun Ma ◽  
XiaoLi Liu ◽  
Feng Chen ◽  
Han Zhao ◽  
...  

In this paper, we design a novel robust control method to reduce the trajectory tracking errors of the SCARA robot with uncertainties including parameters such as uncertainty of the mechanical system and external disturbance, which are time-varying and nonlinear. Then, we propose a deterministic form of the model-based robust control algorithm to deal with the uncertainties. The proposed control algorithm is composed of two parts according to the assumed upper limit of the system uncertainties: one is the traditional proportional-derivative control, and the other is the robust control based on the Lyapunov method, which has the characteristics of model-based and error-based. The stability of the proposed control algorithm is proved by the Lyapunov method theoretically, which shows the system can maintain uniformly bounded and uniformly ultimately bounded. The experimental platform includes the rapid controller prototyping cSPACE, which is designed to reduce programming time and to improve the efficiency of the practical operation. Moreover, we adopt different friction models to investigate the effect of friction on robot performance in robot joints. Finally, numerical simulation and experimental results indicate that the control algorithm proposed in this paper has desired control performance on the SCARA robot.


Author(s):  
Zhangbao Xu ◽  
Qingyun Liu ◽  
Xiaolei Hu

This paper studies a high-accuracy motion control method named output feedback adaptive robust control for a dc motor with uncertain nonlinearities and parametric uncertainties, which always exist in physical servo systems and deteriorate their tracking performance. As only position signal is measurable, a uniform robust exact differentiator (URED) for the unmeasurable states and adaptive control for the parametric uncertainties are integrated in the model compensation term; and the robust control is applied to handle uncertain nonlinearities and stabilize the system. Then, the stability of the closed-loop system is proved theoretically. Finally, simulation and experimental results are studied for a dc motor system to prove the control performance of the proposed control method.


2013 ◽  
Vol 397-400 ◽  
pp. 1477-1481
Author(s):  
Bang Sheng Xing ◽  
Wen Hui Zhang

The rigid robotic manipulators is used in the mining industry more and more widely. An adaptive robust control algorithm of robotic manipulators based on radial basis function neural network (RBFNN) is proposed by the paper. Neural network controller is used to adaptive learn and compensate the unknown system, approach errors as disturbance are eliminated by robust controller. The weight adaptive laws on-line based on Lyapunov theory is designed. The robust controller was proposed based on H theory. Above these assured the stability of the whole system, and L2 gain also was less than the index. This control scheme possesses great control accuracy and dynamic function. The simulation results show that the presented neural network control algorithm is effective.


2022 ◽  
Vol 12 (2) ◽  
pp. 794
Author(s):  
Manh Hung Nguyen ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

In this paper, a novel adaptive robust control (ARC) scheme is proposed for electro-hydraulic servo systems (EHSSs) with uncertainties and disturbances. All dynamic functions in system dynamics are effectively approximated by multi-layer radial basis function neural network (RBF NN)-based approximators with online adaptive mechanisms. Moreover, neural network-based disturbance observers (NN-DOBs) are established to actively estimate and efficiently compensate for the effects of not only the matched/mismatched but also the imperfections of RBF NN-based approximators on the control system. Based on that, the nonlinear robust control law which integrates RBF NNs and NN-DOBs is synthesized via the sliding mode control (SMC) approach to guarantee the high-accuracy position tracking performance of the overall control system. Furthermore, the problem of the combination between DOBs and RBF NNs is first introduced in this paper to treat both disturbances and uncertainties in the EHSS. The stability of the recommended control mechanism is proven by using Lyapunov theory. Finally, numerical simulations with several distinct frequency levels of reference trajectory are conducted to convincingly demonstrate the effectiveness of the proposed approach.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Le Liang ◽  
Yanjie Liu ◽  
Hao Xu

Multiobjective trajectory optimization and adaptive backstepping control method based on recursive fuzzy wavelet neural network (RFWNN) are proposed to solve the problem of dynamic modeling uncertainties and strong external disturbance of the rubber unstacking robot during recycling process. First, according to the rubber viscoelastic properties, the Hunt-Crossley nonlinear model is used to construct the robot dynamics model. Then, combined with the dynamic model and the recycling process characteristics, the multiobjective trajectory optimization of the rubber unstacking robot is carried out for the operational efficiency, the running trajectory smoothness, and the energy consumption. Based on the trajectory optimization results, the adaptive backstepping control method based on RFWNN is adopted. The RFWNN method is applied in the main controller to cope with time-varying uncertainties of the robot dynamic system. Simultaneously, an adaptive robust control law is developed to eliminate inevitable approximation errors and unknown disturbances and relax the requirement for prior knowledge of the controlled system. Finally, the validity of the proposed control strategy is verified by experiment.


Sign in / Sign up

Export Citation Format

Share Document