Trajectory Tracking and Control for Nonholonomic Ground Vehicle: Preliminary and Experimental Test

Author(s):  
Yuanyan Chen ◽  
J. Jim Zhu

A car-like ground vehicle is a nonlinear and underactuated system subject to nonholonomic constraints. Trajectory tracking control of such systems is a challenging problem. To this end, a trajectory tracking controller based on nonlinear kinematics and dynamics model of a ground vehicle by Trajectory Tracking Control (TLC) is presented in our previous work. In this paper, we present hardware validation of TLC controller design with vehicle parameters determination for a Radio Controlled (RC) scaled model vehicle, experimental implementation, and tuning procedure. Hardware testing results are presented to demonstrate the effectiveness of our design. The design can be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with only knowledge of the vehicle model parameters.

Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Xiaojie Sun ◽  
Guofeng Wang ◽  
Yunsheng Fan

To promote the development of military and civilian applications for marine technology, more and more scientific research around the world has begun to develop unmanned surface vehicles (USVs) technology with advanced control capabilities. This paper establishes and identifies the model of vector propulsion USV, which is widely used at present. After analyzing its actuator distribution, we consider that the more realistic vessel model should be an incomplete underactuated system. For this system, a virtual control point method is adopted and an adaptive sliding mode trajectory tracking controller with neural network minimum learning parameter (NNMLP) theory is designed. Finally, in the simulation experiment, the thruster speed and propulsion angle are used as the inputs of the controller, and the linear and circular trajectory tracking tests are carried out considering the delay effect of the actuator, system uncertainty, and external disturbance. The results show that the proposed tracking control framework is reasonable.


Author(s):  
Jin Shang ◽  
Jian Zhang ◽  
Chengchun Li

AbstractIn order to realize the automation of transport equipment, according to the automatic guided vehicle (AGV) kinematics model, the trajectory tracking control of AGV with front wheel steering and rear wheel drive is studied. Lyapunov function is used to ensure the global stability of the system. Time-varying state feedback method based on integral backstepping is adopted, introducing virtual feedback, a trajectory tracking controller for AGV with nonholonomic constraints is proposed. In order to ensure the smooth motion of AGV, the speed and acceleration limited strategy of AGV is introduced into the controller. Simulation results show that the algorithm is fast, accurate and globally stable for different paths.


10.5772/6224 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 38 ◽  
Author(s):  
Umesh Kumar ◽  
Nagarajan Sukavanam

For a four wheeled mobile robot a trajectory tracking concept is developed based on its kinematics. A trajectory is a time–indexed path in the plane consisting of position and orientation. The mobile robot is modeled as a non holonomic system subject to pure rolling, no slip constraints. To facilitate the controller design the kinematic equation can be converted into chained form using some change of co-ordinates. From the kinematic model of the robot a backstepping based tracking controller is derived. Simulation results demonstrate such trajectory tracking strategy for the kinematics indeed gives rise to an effective methodology to follow the desired trajectory asymptotically.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 222
Author(s):  
Xiaoshan Gao ◽  
Liang Yan ◽  
Chris Gerada

Wheeled mobile robot (WMR) is usually applicable for executing an operational task around complicated environment; skidding and slipping phenomena unavoidably appear during the motion, which thus can compromise the accomplishment of the task. This paper investigates the trajectory tracking control problem of WMRs via disturbance rejection in the presence of wheel skidding and slipping phenomena. The kinematic and dynamic models with the perturbed nonholonomic constraints are established. The trajectory tracking control scheme at the dynamic level is designed so that the mobile robot system can track the virtual velocity asymptotically, and counteract the perturbation caused by the unknown skidding and slipping of wheels. Both simulation and experimental works are conducted, and the results prove the performance of the proposed control scheme is effective in terms of tracking precision and disturbance attenuation.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 974
Author(s):  
Ouxue Li ◽  
Yusheng Zhou

This paper proposes a novel control strategy to address the precise trajectory tracking control problem of a ship towing system. At first, the kinematics and dynamics models of a ship towing system are established by introducing a passive steering angle and using its structure relationship. Then, by using the motion law derived from its nonholonomic constraints, the relative curvature of the target trajectory curve is applied to design a dynamical tracking target. By applying the sliding mode control and inverse dynamic adaptive control methods, two appropriate robust torque controllers are designed via the dynamical tracking target, so that both the tugboat and the towed ship are able to track the desired path precisely. As we show, the proposed strategy has excellent agreement with the numerical simulation results.


2021 ◽  
Vol 5 ◽  
pp. 157-181
Author(s):  
. Iswanto ◽  
Alfian Ma’arif ◽  
Nia Maharani Raharja ◽  
Gatot Supangkat ◽  
Fitri Arofiati ◽  
...  

Inhalation therapy is one of the most popular treatments for many pulmonary conditions. The proposed Covid-19 aromatherapy robot is a type of Unmanned Ground Vehicle (UGV) mobile robot that delivers therapeutic vaporized essential oils or drugs needed to prevent or treat Covid-19 infections. It uses four omnidirectional wheels with a controlled speed to possibly move in all directions according to its trajectory. All motors for straight, left, or right directions need to be controlled, or the robot will be off-target. The paper presents omnidirectional four-wheeled robot trajectory tracking control based on PID and odometry. The odometry was used to obtain the robot's position and orientation, creating the global map. PID-based controls are used for three purposes: motor speed control, heading control, and position control. The omnidirectional robot had successfully controlled the movement of its four wheels at low speed on the trajectory tracking with a performance criterion value of 0.1 for the IAEH, 4.0 for MAEH, 0.01 for RMSEH, 0.00 for RMSEXY, and 0.06 for REBS. According to the experiment results, the robot's linear velocity error rate is 2%, with an average test value of 1.3 percent. The robot heading effective error value on all trajectories is 0.6%. The robot's direction can be monitored and be maintained at the planned trajectory. Doi: 10.28991/esj-2021-SPER-13 Full Text: PDF


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Oualid Doukhi ◽  
Abdur Razzaq Fayjie ◽  
Deok Jin Lee

The paper presents the mathematical model of a quadrotor unmanned aerial vehicle (UAV) and the design of robust Self-Tuning PID controller based on fuzzy logic, which offers several advantages over certain types of conventional control methods, specifically in dealing with highly nonlinear systems and parameter uncertainty. The proposed controller is applied to the inner and outer loop for heading and position trajectory tracking control to handle the external disturbances caused by the variation in the payload weight during the flight period. The results of the numerical simulation using gazebo physics engine simulator and real-time experiment using AR drone 2.0 test bed demonstrate the effectiveness of this intelligent control strategy which can improve the robustness of the whole system and achieve accurate trajectory tracking control, comparing it with the conventional proportional integral derivative (PID).


Sign in / Sign up

Export Citation Format

Share Document