Trajectory Tracking and Control for Nonholonomic Ground Vehicle: Preliminary and Experimental Test
A car-like ground vehicle is a nonlinear and underactuated system subject to nonholonomic constraints. Trajectory tracking control of such systems is a challenging problem. To this end, a trajectory tracking controller based on nonlinear kinematics and dynamics model of a ground vehicle by Trajectory Tracking Control (TLC) is presented in our previous work. In this paper, we present hardware validation of TLC controller design with vehicle parameters determination for a Radio Controlled (RC) scaled model vehicle, experimental implementation, and tuning procedure. Hardware testing results are presented to demonstrate the effectiveness of our design. The design can be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with only knowledge of the vehicle model parameters.