Voltage Response of Parametric Resonance of MEMS Circular Plates Under Hard Excitations

Author(s):  
Julio S. Beatriz ◽  
Dumitru I. Caruntu

Abstract This work deals with the voltage response of parametric resonance of electrostatically actuated microelectromechanical (MEMS) circular plates under hard excitations. Method of Multiple Scales (MMS) and Reduced Order Model (ROM) method using two modes of vibration are used to predict the voltage-amplitude response of the MEMS circular plates. ROM is solved using AUTO 07p, a software package for continuation and bifurcation. MMS used in this paper has one term in the electrostatic force being considered significant. This is the way MMS is used to model hard excitations. MMS shows results similar to those of ROM at lower amplitudes and lower voltages. The differences between the two methods, MMS and ROM, are significant in high amplitudes for all voltages, and the differences are significant in all amplitudes for larger voltages. Significant differences can be noted in the effect of different parameters such as the detuning frequency and damping on the voltage response. ROM AUTO 07p is calibrated using ROM time responses in which the ROM is solved using the solver ode15s in Matlab.


Author(s):  
Julio Beatriz ◽  
Dumitru I. Caruntu

Abstract In this paper, the Method of Multiple Scales, and the Reduced Order Model method of two modes of vibration are used to investigate the amplitude-frequency response of parametric resonance of electrostatically actuated circular plates under hard excitations. Results show that the Method of Multiple Scales is accurate for low voltages. However, it starts to separate from the Reduced Order Model results as the voltage values are larger. The Method of Multiple Scales is good for low amplitudes and weak non-linearities. Furthermore the Reduced Order Model running with AUTO 07p is validated and calibrated using the 2 Term ROM time responses.



Author(s):  
Dumitru I. Caruntu ◽  
Israel Martinez

The nonlinear response of an electrostatically actuated cantilever beam microresonator is investigated. The AC voltage is of frequency near resonator’s natural frequency. A first order fringe correction of the electrostatic force and viscous damping are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for the uniform microresonator are compared with those obtained via the Method of Multiple Scales (MMS).



Author(s):  
Julio Beatriz ◽  
Dumitru I. Caruntu

Abstract This paper uses the Reduced Order Model (ROM) as well as the Method of Multiple Scales (MMS) in order to investigate behavior of electrostatically actuated micro-electro-mechanical systems (MEMS) circular plates under superharmonic resonance of third order. ROM is solved using two methods, the first is a continuation and bifurcation approach by using software package called AUTO 07p in order to obtain the voltage response, and the second approach is a numerical integration using the Matlab built in function ode15s for obtaining time responses of the system. Overall MMS and ROM provide similar results, especially in the lower amplitudes. These methods seem to differ at higher amplitudes. The ROM shows a second unstable branch that MMS does not have. The time responses agree with the ROM voltage response. Furthermore, the influences of different parameters such as that of the detuning parameter, and damping are investigated.



Author(s):  
Julio Beatriz ◽  
Martin Botello ◽  
Dumitru I. Caruntu

This paper deals with the voltage response of electrostatically actuated NEMS resonators at superharmonic resonance. In this work a comparison between Boundary Value Problem (BVP) model, and Reduced Order Model (ROM) is conducted for this type of resonance. BVP model is developed from the partial differential equation by replacing the time derivatives with finite differences. So, the partial differential equation is replaced by a sequence of boundary value problems, one for each step in time. Matlab’s function bvp4c is used to numerically integrate the BVPs. ROMs are based on Galerkin procedure and use the mode shapes of the resonator as a basis of functions. Therefore, the partial differential equation is replaced by a system of differential equations in time. The number of the equations in the system is equal to the number of mode shapes (or modes of vibration) used in the ROM. One mode of vibration ROM is solved using the method of multiple scales. Two modes of vibration ROM is numerically integrated using Matlab’s function ode15s in order to obtain time responses, and a continuation and bifurcation analysis is conducted using AUTO 07P. The effects of different nonlinearities in the system on the voltage response are reported. This work shows that BVP model is a valid method to predict the voltage response of a micro/nano cantilevers.



Author(s):  
Christopher Reyes ◽  
Dumitru I. Caruntu

This paper investigates the dynamics governing the behavior of electrostatically actuated MEMS cantilever resonators. The cantilever is held parallel to a ground plate (electrode) with an AC voltage between the plate and the electrode causing the electrostatic actuation (excitation). For the purposes of this paper this is soft excitation. The frequency of the excitation is near the natural frequency of the cantilever leading to what is known as parametric resonance. The electrostatic force in the problem investigated throughout the paper is nonlinear in nature and includes the fringe effect. Two methods are used in investigating this problem: the method of multiple scales (MMS) and the homotopy perturbation method (HPM). The two methods work well for small non-linearities and small amplitudes. The influence of voltage, fringe, damping, Casimir, and Van der Waals parameters will be investigated in this paper using MMS and HPM as a means of verifying the results obtained.



Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper deals with electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers using Reduced Order Model (ROM) method. Forces acting on the CNT cantilever are electrostatic, van der Waals, and damping. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forces electrostatic and van der Waals are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT undergoes nonlinear parametric dynamics. The Method of Multiple Scales (MMS), and ROM are used to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude and frequency-phase behaviors are found in the case of parametric resonance.



Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper investigates the voltage-amplitude response of soft AC electrostatically actuated M/NEMS clamped circular plates. AC frequency is near half natural frequency of the plate. This results in primary resonance. The system is analytically modeled using the Method of Multiple Scales (MMS). The system is assumed weakly nonlinear. The behavior of the system including pull-in instability as the AC voltage is swept up and down while the excitation frequency is constant is reported. The effects of detuning frequency, damping, Casimir force, and van der Waals force are reported as well.



Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper deals with electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers using Reduced Order Model method. The system consists of a CNT parallel to a ground plate. An alternating current (AC) voltage is considered between the two. The CNT undergoes an oscillatory motion due to the electrostatic force generated by the voltage. Another two forces act on the CNT, namely a damping force, and a van der Waals force due to gaps less than 50 nm. The Method of Multiple Scales (MMS) and the Reduced Order Model (ROM) method (using AUTO solver) are used to investigate the system under soft excitations and/or weak nonlinearities. The frequency response is found in the case of AC near half natural frequency.



Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper utilizes Reduced Order Model (ROM) method to investigate the voltage-amplitude response of electrostatically actuated M/NEMS clamped circular plates. Soft AC voltage at frequency near half natural frequency of the plate is used. This results in primary resonance of the system. The effects of nonlinearities of the system including pull-in instability on the voltage-amplitude response are investigated. Namely, the effects of detuning frequency, damping, Casimir force, and van der Waals force on the voltage response of clamped circular plates are reported. Casimir and van der Waals forces are found to have significant effects on the response of clamped circular plates and must be considered to accurately model and predict the behavior of the system.



2011 ◽  
Vol 11 (04) ◽  
pp. 641-672 ◽  
Author(s):  
DUMITRU I. CARUNTU ◽  
MARTIN KNECHT

This paper deals with the nonlinear response of electrostatically actuated cantilever beam microresonators near-half natural frequency. A first-order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. Both forces, electrostatic and Casimir, are nonlinear. The dynamics of the resonator is investigated using the method of multiple scales (MMS) in a direct approach of the problem. The reduced order model (ROM) method, based on Galerkin procedure, is used as well. Steady-state motions are found. Numerical simulations are conducted for uniform microresonators. The influences of damping, actuation, and fringe effect on the resonator response are found.



Sign in / Sign up

Export Citation Format

Share Document