Thermal Rectification by Ballistic Phonons

Author(s):  
John Miller ◽  
Wanyoung Jang ◽  
Chris Dames

In analogy to the asymmetric transport of electricity in a familiar electrical diode, a thermal rectifier transports heat more favorably in one direction than in the reverse direction. One approach to thermal rectification is asymmetric scattering of phonons and/or electrons, similar to suggestions in the literature for a sawtooth nanowire [1] or 2-dimensional electron gas with triangular scatterers [2]. To model the asymmetric heat transport in such nanostructures, we have used phonon ray-tracing, focusing on characteristic lengths that are small compared to the mean free path of phonons in bulk. To calculate the heat transfer we use a transmission-based (Landauer-Buttiker) method. The system geometry is described by a four-dimensional transfer function that depends on the position and angle of phonon emission and absorption from each of two contacts. At small temperature gradients, the phonon distribution function is very close to the usual isotropic equilibrium (Bose-Einstein) distribution, and there is no thermal rectification. In contrast, at large temperature gradients, the anisotropy in the phonon distribution function becomes significant, and the resulting heat flux vs. temperature curve (analogous to I-V curve of a diode) reveals large thermal rectification.

Author(s):  
John Miller ◽  
Wanyoung Jang ◽  
Chris Dames

In analogy to an electrical diode, a thermal rectifier transports heat more easily in one direction than in the reverse direction. Among various possible nanoscale rectification mechanisms, a ballistic rectifier relies on asymmetric scattering of energy carriers, as has been suggested for phonon transport in a sawtooth nanowire [S. Saha, L. Shi, & R. Prasher, IMECE 2006] or nanowire with special surface specularity function [N.A. Roberts and D.G. Walker, ITherm 2008]. We have used a Landauer-Buttiker method as well as a Monte Carlo method to model the asymmetric heat transport in such nanostructures, with careful attention to boundary conditions that satisfy the 2nd Law of Thermodynamics. The calculations show that ballistic rectification is only significant at relatively large “thermal bias,” which causes significant anisotropy in the distribution function of energy carriers emitted at each of the two thermal contacts. We also propose experiments to observe this phenomenon using either phonons or photons.


Author(s):  
C. Dames

The thermal conductivity is modeled with a spectral form of kinetic theory k=13∫CωνLdω(1) where ω is the angular frequency, Cω is the specific heat per unit frequency, ν = ∂ω/∂q is the group velocity, and L is the effective mean free path (MFP) which combines bulk and boundary scattering using Matthiessen’s rule: Cω=ħωDOS∂f/∂T(2)L−1=Lbulk−1+Lboundary−1.(3) Here q is the wavevector, DOS is the density of states (acoustic modes only), T is the temperature, and f is the Bose-Einstein distribution function.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kazi Ashraful Alam ◽  
Mir Mehedi Faruk

Entropy bound for the photon gas in a noncommutative (NC) spacetime where phase space is with compact spatial momentum space, previously studied by Nozari et al., has been reexamined with the correct distribution function. While Nozari et al. have employed Maxwell-Boltzmann distribution function to investigate thermodynamic properties of photon gas, we have employed the correct distribution function, that is, Bose-Einstein distribution function. No such entropy bound is observed if Bose-Einstein distribution is employed to solve the partition function. As a result, the reported analogy between thermodynamics of photon gas in such NC spacetime and Bekenstein-Hawking entropy of black holes should be disregarded.


Author(s):  
P. Lopez ◽  
Y. Bayazitoglu

Lattice Boltzmann (LB) method models have been demonstrated to provide an accurate representation of the flow characteristics in rarefied flows. Conditions in such flows are characterized by the Knudsen number (Kn), defined as the ratio between the gas molecular Mean Free Path ( MFP, λ) and the device characteristic length (L). As the Knudsen number increases, the behavior of the flow near the walls is increasingly dominated by interactions between the gas molecules and the solid surface. Due to this, linear constitutive relations for shear stress and heat flux, which are assumed in the Navier-Stokes-Fourier (NSF) system of equations, are not valid within the Knudsen Layer (KL). Fig. 1 illustrates the characteristics of the velocity field within the Knudsen layer in a shear-driven flow. It is easily observed that although the NSF equations with slip flow boundary conditions (represented by dashed line) can predict the velocity profile in the bulk flow region, they fail to capture the flow characteristics inside the Knudsen layer. Slip flow boundary conditions have also been derived using the integral transform technique [1]. Various methods have been explored to extend the applicability of LB models to higher Knudsen number flows, including using higher order velocity sets, and using wall-distance functions to capture the effect of the walls on the mean free path by incorporating such functions on the determination of the local relaxation parameters. In this study, a high order velocity model which contains a two-dimensional, thirteen velocity direction set (e.g., D2Q13), as shown in Fig. 2, is used as the basis of the current LB model. The LB model consists of two independent distribution functions to simulate the density and temperature fields, while the Diffuse Scattering Boundary Condition (DSBC) method is used to simulate the fluid interaction with the walls. To further improve the characterization of transition flow conditions expected in nano-scale heat transfer, we explored the implementation of two wall-distance functions, derived recently based on an integrated form of a probability distribution function, to the high-order LB model. These functions are used to determine the effective mean free path values throughout the height of the micro/nano-channel, and the resulting effect is first normalized and then used to determine local relaxation times for both momentum and energy using a relationship based on the local Knudsen number. The two wall-distance functions are based on integral forms of 1) the classical probability distribution function, ψ(r) = λ0−1e−r/λ0, derived by Arlemark et al [2], in which λ0represents the reference gas mean free path, and 2) a Power-Law probability distribution function, derived by Dongari et al [3]. Thus, the probability that a molecule travels a distance between r and r+dr between two successive collisions is equal to ψ(r)dr. The general form of the integral of the two functions used can be described by ψ(r) = C − f(r), where f(r) represents the base function (exponential or Power Law), and C is set to 1 so that the probability that a molecule will travel a distance r+dr without a collision ranges from zero to 1. The performance of the present LB model coupled with the implementation of the two wall-distance functions is tested using two classical flow cases. The first case considered is that of isothermal, shear-driven Couette flow between two parallel, horizontal plates separated by a distance H, moving in opposite directions at a speed of U0. Fig. 3 shows the normalized velocity profiles across the micro-channel height for various Knudsen numbers in the transition flow regime based on our LB models as compared to data based on the Linearized Boltzmann equation [4]. The results show that our two LB models provide results that are in excellent agreement with the reference data up to the high end of the transition flow regime, with Knudsen numbers greater than 1. The second case is rarefied Fourier flow within horizontal, parallel plates, with the plates being stationary and set to a constant temperature (TTop > TBottom), and the Prandtl number is set to 0.67 to match the reference data based on the Direct Simulation Monte Carlo (DSMC) method [5]. Fig. 4 shows the normalized temperature profiles across the microchannel height for various Knudsen numbers in the slip/transition How regime. For the entire Knudsen number range studied, our two LB models provide temperature profiles that are in excellent agreement with the non-linear profile seen in the reference data. The results obtained show that the effective MFP relationship based on the exponential function improves the results obtained with the high order LB model for both shear-driven and Fourier flows up to Kn∼1. The results also show that the effective MFP relationship based on the Power Law distribution function greatly enhances the results obtained with the high order LB model for the two cases addressed, up to Kn∼3. In conclusion, the resulting LB models represent an effective tool in modeling non-equilibrium gas flows expected within micro/nano-scale devices.


2019 ◽  
Vol 34 (23) ◽  
pp. 1950185 ◽  
Author(s):  
Massimo Giovannini

The degree of second-order coherence of the relic gravitons produced from the vacuum is super-Poissonian and larger than in the case of a chaotic source characterized by a Bose–Einstein distribution. If the initial state does not minimize the tensor Hamiltonian and has a dispersion smaller than its averaged multiplicity, the overall statistics is by definition sub-Poissonian. Depending on the nature of the sub-Poissonian initial state, the final degree of second-order coherence of the quanta produced by stimulated emission may diminish (possibly even below the characteristic value of a chaotic source) but it always remains larger than one (i.e. super-Poissonian). When the initial statistics is Poissonian (like in the case of a coherent state or for a mixed state weighted by a Poisson distribution) the degree of second-order coherence of the produced gravitons is still super-Poissonian. Even though the quantum origin of the relic gravitons inside the Hubble radius can be effectively disambiguated by looking at the corresponding Hanbury Brown–Twiss correlations, the final distributions caused by different initial states maintain their super-Poissonian character which cannot be altered.


1980 ◽  
Vol 6 (3-4) ◽  
pp. 227-229
Author(s):  
Carl R. Zimmer

A modified version of the computer programme SINC-S is described which permits the user to specify independently up to 30 different device temperatures in a given problem when the proper control statement is included. An additional option is an algorithm for the steady-state solution of a non-linear network with periodic inputs, so that realistic system operation may be simulated. The programme may be used to provide more accurate simulation of circuits where large temperature gradients are present, and to furnish input data for other thermal analysis programmes


Sign in / Sign up

Export Citation Format

Share Document