An Examination of the Effect of Reynolds Number on Airfoil Performance

Author(s):  
Tim Burdett ◽  
Jason Gregg ◽  
Kenneth Van Treuren

The standard of living throughout the world has increased dramatically over the last 30 years and is projected to continue to rise. This growth leads to an increased demand on conventional energy sources, such as fossil fuels. However, these are finite resources. Thus, there is an increasing demand for alternative energy sources, such as wind energy. Much of current wind turbine research focuses on large-scale (>1 MW), technologically-complex wind turbines installed in areas of high average wind speed (>20 mph). An alternative approach is to focus on small-scale (1–10kW), technologically-simple wind turbines built to produce power in low wind regions. While these turbines may not be as efficient as the large-scale systems, they require less industrial support and a less complicated electrical grid since the power can be generated at the consumer’s location. To pursue this approach, a design methodology for small-scale wind turbines must be developed and validated. This paper addresses one element of this methodology, airfoil performance prediction. In the traditional design process, an airfoil is selected and published lift and drag curves are used to optimize the blade twist and predict performance. These published curves are typically generated using either experimental testing or a numeric code, such as PROFIL (the Eppler Airfoil Design and Analysis Code) or XFOIL. However, the published curves often represent performance over a different range of Reynolds numbers than the actual design conditions. Wind turbines are typically designed from 2-D airfoil data, so having accurate airfoil data for the design conditions is critical. This is particularly crucial for small-scale, fixed-pitched wind turbines, which typically operate at low Reynolds numbers (<500,000) where airfoil performance can change significantly with Reynolds number. From a simple 2-D approach, the ideal operating condition for an airfoil to produce torque is the angle of attack at which lift is maximized and drag is minimized, so prediction of this angle will be compared using experimental and simulated data. Theoretical simulations in XFOIL of the E387 airfoil, designed for low Reynolds numbers, suggest that this optimum angle for design is Reynolds number dependent, predicting a difference of 2.25° over a Reynolds number range of 460,000 to 60,000. Published experimental data for the E387 airfoil demonstrate a difference of 2.0° over this same Reynolds number range. Data taken in the Baylor University Subsonic Wind Tunnel for the S823 airfoil shows a similar trend. This paper examines data for the E387 and S823 airfoils at low Reynolds numbers (75,000, 150,000, and 200,000 for the S823) and compares the experimental data with XFOIL predictions and published PROFIL predictions.

Author(s):  
David Holst ◽  
Francesco Balduzzi ◽  
Alessandro Bianchini ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit ◽  
...  

Abstract Wind industry needs high quality airfoil data for a range of the angle of attack (AoA) much wider than that often provided by the technical literature, which often lacks data i.e. in deep- and post-stall region. Especially in case of vertical axis wind turbines (VAWTs), the blades operate at very large AoAs, which exceed the range of typical aviation application. In a previous study, some of the authors analyzed the trend of the lift coefficient of a NACA 0021 airfoil, using the suggestions provided by detailed CFD analyses to correct experimental data at low Reynolds numbers collected in an open-jet tunnel. In the present study, the correction method is extended in order to analyze even the drag and moment coefficients over a wide range of AoAs for two different Reynolds numbers (Re = 140k and Re = 180k) of particular interest for small wind turbines. The utility of these data is again specifically high in case of VAWTs, in which both the drag and the moment coefficient largely contribute to the torque. The investigation involves tunnel data regarding both static polars and dynamic sinusoidal pitching movements at multiple reduced frequencies. Concerning the numerical simulations, two different computational domains were considered, i.e. the full wind tunnel and the open field. Once experimental data have been purged by the influence of the wind tunnel by means of the proposed correction method, they were compared to existing data for similar Reynolds both for the NACA0021 and for similar airfoils. By doing so, some differences in the static stall angle and the extent of the hysteresis cycle are discussed. Overall, the present paper provides the scientific community with detailed analysis of low-Reynolds NACA 0021 data in multiple variations, which may enable, inter alia, a more effective VAWT design in the near future.


1971 ◽  
Vol 45 (1) ◽  
pp. 203-208 ◽  
Author(s):  
D. J. Tritton

A discussion is given of the current state of knowledge of vortex streets behind circular cylinders in the Reynolds number range 50 to 160. This was prompted by Gaster's (1969) report that he could not find the transition at a Reynolds number of about 90 observed by Tritton (1959) and Berger (1964a). A further brief experiment confirming the existence of the transition is described Reasons for rejecting Gaster's interpretation are advanced. Possible (mutually alternative) explanations of the discrepant observations are suggested.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivan Marusic ◽  
Dileep Chandran ◽  
Amirreza Rouhi ◽  
Matt K. Fu ◽  
David Wine ◽  
...  

AbstractSimulations and experiments at low Reynolds numbers have suggested that skin-friction drag generated by turbulent fluid flow over a surface can be decreased by oscillatory motion in the surface, with the amount of drag reduction predicted to decline with increasing Reynolds number. Here, we report direct measurements of substantial drag reduction achieved by using spanwise surface oscillations at high friction Reynolds numbers ($${{{\mathrm{Re}}}_{\tau }}$$ Re τ ) up to 12,800. The drag reduction occurs via two distinct physical pathways. The first pathway, as studied previously, involves actuating the surface at frequencies comparable to those of the small-scale eddies that dominate turbulence near the surface. We show that this strategy leads to drag reduction levels up to 25% at $${{{{{{{{\mathrm{Re}}}}}}}}}_{\tau }$$ Re τ = 6,000, but with a power cost that exceeds any drag-reduction savings. The second pathway is new, and it involves actuation at frequencies comparable to those of the large-scale eddies farther from the surface. This alternate pathway produces drag reduction of 13% at $${{{{{{{{\mathrm{Re}}}}}}}}}_{\tau }$$ Re τ = 12,800. It requires significantly less power and the drag reduction grows with Reynolds number, thereby opening up potential new avenues for reducing fuel consumption by transport vehicles and increasing power generation by wind turbines.


Author(s):  
Don W. Allen ◽  
Nicole Liu

Most deepwater tubulars experiencing high currents frequently require vortex-induced vibration (VIV) suppression to maintain an acceptable fatigue life. While helical strakes and fairings are by far the most popular VIV suppression devices used in the offshore industry today, a myriad of small alternations to these basic devices can significantly impact the observed levels of suppression effectiveness. Additionally, numerous novel VIV reduction devices are continually being developed and some new devices are progressing towards the product readiness phase. It is quite common to first test suppression devices at low Reynolds numbers due to the availability of smaller scale facilities that are typically more budget-friendly than larger scale facilities. For larger scale testing, it is usually simpler and less expensive to evaluate prototype suppression devices on shorter pipe sections that are spring mounted rather than test on longer flexible pipes. This paper utilizes results from historical VIV experiments to evaluate the merits of various test setups and scales and to underscore the importance of Reynolds number. An assortment of testing scales are presented including: a) small diameter tests at low Reynolds numbers; b) moderate diameter tests that incorporate at least part of the critical Reynolds number range; c) short pipe tests conducted at prototype Reynolds numbers; and d) long pipe tests conducted at high Reynolds numbers but at less than full scale suppression geometry. The use of computational fluid dynamics (CFD) is also briefly discussed.


1965 ◽  
Vol 180 (1) ◽  
pp. 331-356 ◽  
Author(s):  
L. J. Kastner ◽  
J. C. McVeigh

In view of the importance of accurate measurement of flow rate at low Reynolds numbers, there have been numerous attempts to develop metering devices having constant discharge coefficients in the range of pipe Reynolds numbers between about 3000 and 200 and even below this latter value, and some of these attempts have achieved a reasonable degrees of success. Nevertheless, some confusion exists regarding the dimensions and range of utility of certain designs which have been recommended and further information is necessary in order that the situation may be clarified. The aims of the present investigation, which is believed to be wider in scope than any published in this field in recent years, were to review and correlate existing knowledge and to make an experimental study of the properties of various types of orifice in the low range of Reynolds numbers. Arising from this it was hoped that a design might be evolved which not only had a satisfactorily constant discharge coefficient throughout the range but was also simple to manufacture and reproduce, even for small orifice diameters of the order of 0.5 in or less, and it is believed that some success in attaining this aim was achieved. The first section of the paper contains a review of previous investigations classified into three main groups. In the second part of the paper, experiments with various types of orifice plate are described and it is shown that a properly proportioned single-bevelled orifice has as good a performance in the low Reynolds number range as that of any of the more complicated shapes.


Author(s):  
Kenneth W. Van Treuren ◽  
Terrence Simon ◽  
Marc von Koller ◽  
Aaron R. Byerley ◽  
James W. Baughn ◽  
...  

With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients and identification of separation zones. Reynolds numbers of 25,000 and 50,000 and with 1% and 8–9% turbulence intensity of the approach flow (Free Stream Turbulence Intensity, FSTI) were investigated. At 25,000 Reynolds number and low FSTI, the suction surface displayed a strong and steady separation region. Raising the turbulence intensity resulted in a very unsteady separation region of nearly the same size on the suction surface. Vortex generators were added to the suction surface, but they appeared to do very little at this Reynolds number. At the higher Reynolds number of 50,000, the low-FSTI case was strongly separated on the downstream portion of the suction surface. The separation zone was eliminated when the turbulence level was increased to 8–9%. Vortex generators were added to the suction surface of the low-FSTI case. In this instance, the vortices were able to provide the mixing needed to reestablish flow attachment. This paper shows that massive separation at very low Reynolds numbers (25,000) is persistent, in spite of elevated FSTI and added vortices. However, at a higher Reynolds number, there is opportunity for flow reattachment either with elevated freestream turbulence or with added vortices. This may be the first documentation of flow behavior at such low Reynolds numbers. Though undesirable to operate under these conditions, it is important to know what to expect and how performance may be improved if such conditions are unavoidable.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


Sign in / Sign up

Export Citation Format

Share Document