Analysis of a Combined Cycle Plant Using a Small Particle Receiver to Drive a Primary Brayton Cycle

Author(s):  
Matthew Miguel Virgen ◽  
Fletcher Miller

All current commercial CSP plants operate at relatively low thermodynamic efficiency due to lower temperatures than similar conventional plants and due to the fact that they all employ Rankine conversion cycles. We present here an investigation on the effects of adding a bottoming steam power cycle to a hybrid CSP plant based on a Small Particle Heat Exchange Receiver (SPHER) driving a gas turbine as the primary cycle. Due to the high operating temperature of the SPHER being considered (over 1000 Celsius), the exhaust air from the primary Brayton cycle still contains a tremendous amount of exergy. While in the previous analysis this fluid was only used in a recuperator to preheat the Brayton working fluid, the current analysis explores the potential power and efficiency gains from instead directing the exhaust fluid through a heat exchanger to power a Rankine steam cycle. Not only do we expect the efficiency of this model to be competitive with conventional power plants, but the water consumption per kilowatt-hour will also be reduced by nearly two thirds as compared to most existing concentrating solar thermal power plants as a benefit of having air as the primary working fluid, which eliminates the condensation step present in Rankine-cycle systems. Coupling a new steam cycle model with the gas-turbine CSP model previously developed at SDSU, a wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP combined cycle gas turbine (CCGT) plant. Due to the generalized nature of the bottoming cycle modeling, and the varying nature of solar power, special consideration had to be given to the behavior of the heat exchanger and Rankine cycle in off-design scenarios. The trade-offs of removing the recuperator for preheating the primary fluid are compared to potential overall power and efficiency gains in the combined cycle case.

2013 ◽  
Vol 597 ◽  
pp. 87-98
Author(s):  
Dariusz Mikielewicz ◽  
Jan Wajs ◽  
Elżbieta Żmuda

A preliminary evaluation has been made of a possibility of bottoming of a conventional Brayton cycle cooperating with the CHP power plant with the organic Rankine cycle installation. Such solution contributes to the possibility of annual operation of that power plant, except of operation only in periods when there is a demand for the heat. Additional benefit would be the fact that an optimized backpressure steam cycle has the advantage of a smaller pressure ratio and therefore a less complex turbine design with smaller final diameter. In addition, a lower superheating temperature is required compared to a condensing steam cycle with the same evaporation pressure. Bottoming ORCs have previously been considered by Chacartegui et al. for combined cycle power plants [ Their main conclusion was that challenges are for the development of this technology in medium and large scale power generation are the development of reliable axial vapour turbines for organic fluids. Another study was made by Angelino et al. to improve the performance of steam power stations [. This paper presents an enhanced approach, as it will be considered here that the ORC installation could be extra-heated with the bleed steam, a concept presented by the authors in [. In such way the efficiency of the bottoming cycle can be increased and an amount of electricity generated increases. A thermodynamic analysis and a comparative study of the cycle efficiency for a simplified steam cycle cooperating with ORC cycle will be presented. The most commonly used organic fluids will be considered, namely R245fa, R134a, toluene, and 2 silicone oils (MM and MDM). Working fluid selection and its application area is being discussed based on fluid properties. The thermal efficiency is mainly determined by the temperature level of the heat source and the condenser conditions. The influence of several process parameters such as turbine inlet and condenser temperature, turbine isentropic efficiency, vapour quality and pressure, use of a regenerator (ORC) will be presented. Finally, some general and economic considerations related to the choice between a steam cycle and ORC are discussed.


2018 ◽  
Vol 2 (1) ◽  

The major growth in the electricity production industry in the last 30 years has centered on the expansion of natural gas power plants based on gas turbine cycles. The most popular extension of the simple Brayton gas turbine has been the combined cycle power plant with the Air-Brayton cycle serving as the topping cycle and the Steam-Rankine cycle serving as the bottoming cycle for new generation of nuclear power plants that are known as GEN-IV. The Air-Brayton cycle is an open-air cycle and the Steam-Rankine cycle is a closed cycle. The air-Brayton cycle for a natural gas driven power plant must be an open cycle, where the air is drawn in from the environment and exhausted with the products of combustion to the environment. This technique is suggested as an innovative approach to GEN-IV nuclear power plants in form and type of Small Modular Reactors (SMRs). The hot exhaust from the AirBrayton cycle passes through a Heat Recovery Steam Generator (HSRG) prior to exhausting to the environment in a combined cycle. The HRSG serves the same purpose as a boiler for the conventional Steam-Rankine cycle [1].


Author(s):  
Peter Rez

Nearly all electrical power is generated by rotating a coil in a magnetic field. In most cases, the coil is turned by a steam turbine operating according to the Rankine cycle. Water is boiled and heated to make high-pressure steam, which drives the turbine. The thermal efficiency is about 30–35%, and is limited by the highest steam temperature tolerated by the turbine blades. Alternatively, a gas turbine operating according to the Brayton cycle can be used. Much higher turbine inlet temperatures are possible, and the thermal efficiency is higher, typically 40%. Combined cycle generation, in which the hot exhaust from a gas turbine drives a Rankine cycle, can achieve thermal efficiencies of almost 60%. Substitution of coal-fired by combined cycle natural gas power plants can result in significant reductions in CO2 emissions.


Author(s):  
Richard P. Johnston

Potential LHV performance of an indirect coal-fired gas turbine-based combined cycle plant is explored and compared to the typical LHV 35–38 % thermal efficiencies achievable with current coal-fired Rankine Cycle power plants. Plant performance with a baseline synchronous speed, single spool 25:1 pressure ratio gas turbine with a Rankine bottoming cycle was developed. A coal-fired High Temperature Advanced Furnace (HITAF) supplying 2000° F. (1093° C.) hot pressurized air for the gas turbine was modeled for the heat source. The HITAF concept along with coal gas for supplemental heating, are two important parts of the clean coal technology program for power plants. [1,2] From this baseline power plant arrangement, different gas turbine engine configurations with two pressure ratios are evaluated. These variations include a dual spool concentric shaft gas turbine, dual spool non-concentric shaft arrangement, intercooler, liquid metal loop re-heater, free power turbine (FPT) and post HITAF duct burner (DB). A dual pressure Heat Recovery Steam Generator (HRSG) with varying steam pressures to fit conditions is used for each engine. A novel steam generating method employing flash tank technology is applied when a water-cooled intercooler is incorporated. A halogenated hydrocarbon working fluid is also evaluated for lower temperature sub-bottoming Rankine cycle equipment. Current technology industrial gas turbine component performance levels are applied to these various engines to produce a range of LHV gross gas turbine thermal efficiency estimates. These estimates range from the lower thirties to over forty percent. Overall LHV combined cycle plant gross thermal efficiencies range from nearly forty to over fifty percent. All arrangements studied would produce significant improvements in thermal efficiency compared to current coal-fired Rankine cycle power plants. Regenerative inter-cooling, free power turbines, and dual-spool non-concentric shaft gas turbine arrangements coupled with post-HITAF duct burners produced the highest gas turbine engine and plant efficiency results. These advanced engine configurations should also produce operational benefits such as easier starting and much improved part power efficiency over the baseline engine arrangement. An inter-turbine liquid metal re-heat loop reduced engine thermal efficiency but did increase plant power output and efficiency for the example studied. Use of halogenated hydrocarbons as a working fluid would add to plant power output, but at the cost of significant additional plant equipment.


Author(s):  
Douglas C. Hofer ◽  
S. Can Gulen

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately 1/3 of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to optimize the bottoming cycle efficiency and doing so requires a solid understanding of the efficiency entitlement. This paper describes a new technique for calculating the theoretical efficiency entitlement for a bottoming cycle that corresponds to the maximum possible bottoming cycle work and maximized combined cycle work and efficiency. This new method accounts for the decrease in ideal efficiency as the gas turbine exhaust is cooled as it transfers heat energy to the working fluid in the bottoming cycle. The new definition is compared to conventional definitions, including that of Carnot and an Exergy based second law efficiency, and shown to provide a simple and accurate analytical expression for the entitlement efficiency in a bottoming cycle. For representative cycle conditions, the entitlement efficiency for the bottoming cycle is calculated to be ∼45% compared to the Carnot efficiency for the same conditions of ∼67%. Although the new method is applicable to any power cycle obtaining its heat input from the exhaust stream of a topping cycle, special attention is given to the steam bottoming cycle traditionally used in modern gas turbine combined cycle power plants. Comparisons are made between the ideal bottoming cycle and variants of a steam cycle including a single pressure non-reheat and a three pressure reheat cycle. These comparisons explore the unavoidable loss in efficiency associated with constant temperature heat addition that occurs in the steam cycle.


Author(s):  
Kari Anne Tveitaskog ◽  
Fredrik Haglind

This paper is aimed at designing and optimizing combined cycles for marine applications. For this purpose, an in-house numerical simulation tool called DNA (Dynamic Network Analysis) and a genetic algorithm-based optimization routine are used. The top cycle is modeled as the aero-derivative gas turbine LM2500, while four options for bottoming cycles are modeled. Firstly, a single pressure steam cycle, secondly a dual-pressure steam cycle, thirdly an ORC using toluene as the working fluid and an intermediate oil loop as the heat carrier, and lastly an ABC with inter-cooling are modeled. Furthermore, practical and operational aspects of using these three machinery systems for a high-speed ferry are discussed. Two scenarios are evaluated. The first scenario evaluates the combined cycles with a given power requirement, optimizing the combined cycle while operating the gas turbine at part load. The second scenario evaluates the combined cycle with the gas turbine operated at full load. For the first scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 46.3% and 48.2% for the single pressure and dual pressure steam cycles, respectively. The gas ORC and gas ABC combined cycles obtained thermal efficiencies of 45.6% and 41.9%, respectively. For the second scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 53.5% and 55.3% for the single pressure and dual pressure steam cycles, respectively. The gas ORC and gas ABC combined cycles obtained thermal efficiencies of 51.0% and 47.8%, respectively.


2018 ◽  
Vol 140 (03) ◽  
pp. S52-S53
Author(s):  
Lee S. Langston

This article presents three different gas turbine phenomena and design cases. The sketch in the article shows a schematic of a combined cycle powerplant consisting of a Brayton cycle (gas turbine) whose exhaust provides energy to a Rankine cycle (steam turbine). Frequently, one can use simple but exact one-dimensional (1D) heat conduction solutions to estimate the heat loss or gain of gas turbine components under transient conditions. These easy-to-use solutions are found in most undergraduate heat transfer texts. The article suggests that those three widely different gas turbine phenomena and design cases all have the simple, nonlinear superposition form.


Author(s):  
A. Peretto

The present paper evaluates the behavior, in design and part load working conditions, of a complex gas turbine cycle with multiple intercooled compression, and the optional preheating of the air at the high pressure compressor outlet by means of the gas turbine outlet hot gas. The results are then compared with those obtained by a Brayton cycle gas turbine, with or without preheating of the air at the high pressure compressor outlet. Subsequently, the performance of complex combined cycles, with intercooled gas turbine as topper and one, two or three pressure level steam cycle as bottomer, in design and part load working conditions is also evaluated. The performance of these complex combined plants is then compared with that obtained by a Brayton cycle gas turbine as topper and one, two or three pressure level steam cycle as bottomer. Part load working conditions are realized by varying either the inlet guide vane angle of the first compressor nozzles or the maximum temperature at the combustor outlet. The study shows that in part load working conditions obtained by varying IGV, the complex cycles, in the examined gas turbine or in the combined cycle power plants, give conversion efficiencies decidedly greater than those obtainable by varying combustor exit temperature. Furthermore it is found that these complex power plant efficiencies, in part load working conditions, are far greater than those obtained by the Brayton cycle gas turbine, or by combined cycle with Brayton cycle gas turbine as topper, if IGV adjustment is adopted. If power variation is obtained with combustor outlet temperature adjustment, the efficiencies of the combined power plants with complex or Brayton cycle gas turbines, are substantially the same, for the same relative power variation.


Author(s):  
Isaac Shnaid

The modem combined cycle power plants achieved thermal efficiency of 50–55% by applying bottoming multistage Rankine steam cycle. At the same time, the Brayton cycle is an attractive option for a bottoming cycle engine. In the author’s US Patent No. 5,442,904 is described a combined cycle system with a simple cycle gas turbine, the bottoming air turbine Brayton cycle, and the reverse Brayton cycle. In this system, air turbine Brayton cycle produces mechanic power using exergy of gas turbine exhaust gases, while the reverse Brayton cycle refrigerates gas turbine inlet air. Using this system, supercharging of gas turbine compressor becomes possible. In the paper, thermodynamic optimization of the system is done, and the system techno-economic characteristics are evaluated.


Sign in / Sign up

Export Citation Format

Share Document