Evaluating the Impact of Free-Stream Turbulence on Convective Cooling of Overhead Conductors Using Large Eddy Simulations (LES)

Author(s):  
Mohamed Abdelhady ◽  
David H. Wood

This study uses Large Eddy Simulation in the ANSYS Fluent software to assess the accuracy of the forced cooling term for the overhead conductor codes, IEEE 738 [1] and CIGRÉ 207 [2], for Real Time Thermal Rating of a wind farm power line. The analysis is done for low wind speed, corresponding to Reynolds Number of 3,000. The primary goal is to calculate Nusselt Number for cylindrical conductors with free-stream turbulence. Calculations showed an increase in convective heat transfer from the low turbulence value by ∼ 30 % at turbulence intensity of 21% and length scale to diameter ratio of 0.4; and an increase of ∼ 19 % at turbulence intensity of 8% and length scale to diameter ratio of 0.4.

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Mohamed Abdelhady ◽  
David H. Wood

The international trend of using renewable energy sources for generating electricity is increasing, partly through harvesting energy from wind turbines. Increasing electric power transmission efficiency is achievable through using real-time weather data for power line rating, known as real-time thermal rating (RTTR), instead of using the worst case scenario weather data, known as static rating. RTTR is particularly important for wind turbine connections to the grid, as wind power output and overhead conductor rating both increase with increasing wind speed, which should significantly increase real-time rated conductor from that of statically rated. Part of the real-time weather data is the effect of free-stream turbulence, which is not considered by the commonly used overhead conductor codes, Institute of Electrical and Electronics Engineers (IEEE) 738 and International Council on Large Electric Systems (CIGRÉ) 207. This study aims to assess the effect free-stream turbulence on IEEE 738 and CIGRÉ 207 forced cooling term. The study uses large eddy simulation (LES) in the ANSYS fluent software. The analysis is done for low wind speed, corresponding to Reynolds number of 3000. The primary goal is to calculate Nusselt number for cylindrical conductors with free-stream turbulence. Calculations showed an increase in convective heat transfer from the low turbulence value by ∼30% at turbulence intensity of 21% and length scale to diameter ratio of 0.4; an increase of ∼19% at turbulence intensity of 8% and length scale to diameter ratio of 0.4; and an increase of ∼15% at turbulence intensity of 6% and length scale to diameter ratio of 0.6.


2003 ◽  
Vol 125 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Christian Saumweber ◽  
Achmed Schulz ◽  
Sigmar Wittig

A comprehensive set of generic experiments has been conducted to investigate the effect of elevated free-stream turbulence on film cooling performance of shaped holes. A row of three cylindrical holes as a reference case, and two rows of holes with expanded exits, a fanshaped (expanded in lateral direction), and a laidback fanshaped hole (expanded in lateral and streamwise direction) have been employed. With an external (hot gas) Mach number of Mam=0.3 operating conditions are varied in terms of free-stream turbulence intensity (up to 11%), integral length scale at constant turbulence intensity (up to 3.5 hole inlet diameters), and blowing ratio. The temperature ratio is fixed at 0.59 leading to an enginelike density ratio of 1.7. The results indicate that shaped and cylindrical holes exhibit very different reactions to elevated free-stream turbulence levels. For cylindrical holes film cooling effectiveness is reduced with increased turbulence level at low blowing ratios whereas a small gain in effectiveness can be observed at high blowing ratios. For shaped holes, increased turbulence intensity is detrimental even for the largest blowing ratio M=2.5. In comparison to the impact of turbulence intensity the effect of varying the integral length scale is found to be of minor importance. Finally, the effect of elevated free-stream turbulence in terms of heat transfer coefficients was found to be much more pronounced for the shaped holes.


Author(s):  
Christian Saumweber ◽  
Achmed Schulz ◽  
Sigmar Wittig

A comprehensive set of generic experiments has been conducted to investigate the effect of elevated free-stream turbulence on film cooling performance of shaped holes. A row of three cylindrical holes as a reference case, and two rows of holes with expanded exits, a fanshaped (expanded in lateral direction), and a laidback fanshaped hole (expanded in lateral and streamwise direction) have been employed. With an external (hot gas) Mach number of Mam = 0.3 operating conditions are varied in terms of free-stream turbulence intensity (up to 11%), integral length scale at constant turbulence intensity (up to 3.5 hole inlet diameters), and blowing ratio. The temperature ratio is fixed at 0.59 leading to an engine-like density ratio of 1.7. The results indicate that shaped and cylindrical holes exhibit very different reactions to elevated free-stream turbulence levels. For cylindrical holes film cooling effectiveness is reduced with increased turbulence level at low blowing ratios whereas a small gain in effectiveness can be observed at high blowing ratios. For shaped holes, increased turbulence intensity is detrimental even for the largest blowing ratio (M = 2.5). In comparison to the impact of turbulence intensity the effect of varying the integral length scale is found to be of minor importance. Finally the effect of elevated free-stream turbulence in terms of heat transfer coefficients was found to be much more pronounced for the shaped holes.


1989 ◽  
Vol 111 (1) ◽  
pp. 78-86 ◽  
Author(s):  
R. MacMullin ◽  
W. Elrod ◽  
R. Rivir

The effects of the longitudinal turbulence intensity parameter of free-stream turbulence (FST) on heat transfer were studied using the aggressive flow characteristics of a circular tangential wall jet over a constant heat flux surface. Profile measurements of velocity, temperature, integral length scale, and spectra were obtained at downstream locations (2 to 20 x/D) and turbulence intensities (7 to 18 percent). The results indicated that the Stanton number (St) and friction factor (Cf) increased with increasing turbulence intensity. The Reynolds analogy factor (2St/Cf) increased up to turbulence intensities of 12 percent, then became constant, and decreased after 15 percent. This factor was also found to be dependent on the Reynolds number (Rex) and plate configuration. The influence of length scale, as found by previous researchers, was inconclusive at the conditions tested.


2015 ◽  
Vol 772 ◽  
pp. 330-360 ◽  
Author(s):  
Seo Yoon Jung ◽  
Tamer A. Zaki

Bypass transition in a two-fluid boundary layer is examined using direct numerical simulations (DNSs). A less-viscous wall film is considered and the impact on transition location is evaluated at two different viscosity ratios and free-stream turbulence intensities. The less-viscous wall film absorbs the mean shear from the outer stream, weakens the lift-up mechanism, and alters the disturbance field inside the boundary layer. These effects all favour a delay in the onset of bypass transition. However, the viscosity and mean-shear discontinuities across the two-fluid interface introduce a new mechanism for the generation of wall-normal vorticity in the boundary layer, and can therefore promote transition to turbulence. Conditionally averaged statistics and streak tracking techniques are adopted in order to examine the impact of the wall film on the bypass transition process. It is shown that the weaker amplification of the streaks in the outer fluid can delay breakdown to turbulence, despite the additional disturbance generation at the two-fluid interface. The efficacy of the wall film in delaying transition is demonstrated at moderate level of free-stream turbulence intensity, but is reduced as the turbulence intensity is increased.


Author(s):  
V. P. Maslov ◽  
B. I. Mineev ◽  
K. N. Pichkov ◽  
A. N. Secundov ◽  
A. N. Vorobiev ◽  
...  

A hot-wire technique was used to measure turbulence characteristics in the vicinity of the stagnation line of circular cylinders and a turbine blade model (a chord length of 1 metre). Heat transfer intensity at the stagnation line of the cylinders was also measured by on-surface probes. The experiments were carried out in a wide range of the Reynolds number based on the blade leading edge/cylinder diameter, D (Re = 2.103–2.106) and integral length scale of free-stream turbulence, Le (Le = 0.1–10D) at two values of free stream turbulence intensity, Tu (Tu = 0.02 and 0.10). Along with the experimental data results of the 2D RANS computations are presented of the flow and heat transfer at the circular cylinder with the use of two turbulence models: a two-equation, k-ω SST, model of Menter, and a new two-equation, ν1-L, model developed in the course of the present study.


Author(s):  
Paul E. Roach ◽  
David H. Brierley

The publication of the present authors’ boundary layer transition data in 1992 (now widely known as the ERCOFTAC test case T3) has led to a spate of new experimental and modelling efforts aimed at improving our understanding of this problem. This paper describes a new method of determining boundary layer transition with zero mean pressure gradient. The approach examines the development of a laminar boundary layer to the start of transition, accounting for the influences of free-stream turbulence and test surface geometry. It is presented as a “proof of concept”, requiring a significant amount of work before it can be considered as a practically applicable model for transition prediction. The method is based upon one first put forward by G.I. Taylor in the 1930’s, and accounts for the action of local, instantaneous pressure gradients on the developing laminar boundary layer. These pressure gradients are related to the intensity and length scale of turbulence in the free-stream using Taylor’s simple isotropic model. The findings demonstrate the need to account for the separate influences of free-stream turbulence intensity and length scale when considering the transition process. Although the length scale has less of an effect than the intensity, its influence is, nevertheless, significant and must not be overlooked. This fact goes a long way towards explaining the large scatter to be found in simple correlations which involve only the turbulence intensity. Intriguingly, it is demonstrated that it is the free-stream turbulence at the leading edge of the test surface which is important, not that found locally outside the boundary layer. The additional influence of leading edge geometry is also shown to play a major role in fixing the point at which transition begins. It is suggested that the leading edge geometry will distort the incident turbulent eddies, modifying the effective “free-stream” turbulence properties. Consequently, it is shown that the scale of the eddies relative to the leading edge thickness is a further important parameter, and helps bring together a large number of test cases.


Author(s):  
F. Mumic ◽  
B. Sunden

In the present work, a numerical study has been performed to simulate the effect of free-stream turbulence, length scale and variations in rotational speed of the rotor on heat transfer and fluid flow for a transonic high-pressure turbine stage with tip clearance. The stator and rotor rows interact via a mixing plane, which allows the stage to be computed in a steady manner. The focus is on turbine aerodynamics and heat transfer behavior at the mid-span location, and at the rotor tip and casing region. The results of the fully 3D CFD simulations are compared with experimental results available for the so-called MT1 turbine stage. The predicted heat transfer and static pressure distributions show reasonable agreement with the experimental data. In general, the local Nusselt number increases, at the same turbulence length scale, as the turbulence intensity increases, and the location of the suction side boundary layer transition moves upstream towards the blade leading edge. Comparison of the different length scales at the same turbulence intensity shows that the stagnation heat transfer was significantly increased as the length scale increased. However, the length scale evidenced no significant effects on blade tip or rotor casing heat transfer. Also, the results presented in this paper show that the rotational speed in addition to the turbulence intensity and length scale has an important contribution to the turbine blade aerodynamics and heat transfer.


Sign in / Sign up

Export Citation Format

Share Document