Design, Construction and CFD Modeling of a Banana-Solar Dryer With Double Pass Solar Air Collector

Author(s):  
Philemon Mutabilwa ◽  
Kevin N. Nwaigwe

Abstract A work on the design, construction and computational fluid dynamics modelling of a solar dryer with a double pass solar air collector is presented. Using fundamental relationships, an indirect solar dying system for drying banana was designed and constructed. The system consists of a drying chamber and a double pass solar collector (DPSC), connected together with a flexible aluminum pipe. The system features a unique arrangement, as the drying chamber is underneath the double pass solar collector, and the solar collector itself can be adjusted to an angle of 0° up to 35° the maintenance or research purpose. The DPSC has five longitudinal fins, lying parallel with air flow. The solar dryer is incorporated with a convective DC fan that sucks hot air from the solar collector on to the drying chamber. The DPSC achieved an optimal peak outlet temperature of 345K with a maximum operational efficiency of 72.5%. A computational fluid dynamic (CFD) model is achieved for prediction of the dryer temperature and 3D airflow distribution within the dryer unit using ANSYS 18.2. The CFD model was validated using experimental data. The developed dryer demonstrated improved efficiency over similar dryers, and this is attributable to the unique arrangement of component parts.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Dare Aderibigbe Adetan ◽  
Kolawole Adesola Oladejo ◽  
Surajudeen Obayopo

In many parts of the world there is a growing awareness that renewable energy has an important role to play in extending technology to the farmers in developing countries to increase their productivity. Solar thermal technology is rapidly gaining acceptance as an energy saving technology in agriculture application. This article presents the design, construction and performance evaluation of a solar dryer for food preservation. In the dryer, heated air from a separate solar collector is passed through beds of grains. The design of the dryer makes provision for the attachment of additional mirrors on two opposite sides of the solar collection chamber. Overall, the dryer is of simple design, cost effective, and made from affordable available materials and require little or no skills for its fabrication and operation. The results obtained fromtests carried out on the dryer revealed that the temperatures inside the drying chamber and the solar collector were highest when the side mirrors were at 45o to the vertical, giving optimum performance under various experimental conditions.



Author(s):  
Istvan Farkas ◽  
Maytham A. Al-Neama

In this study, an experimental investigation was carried out on solar system consists of many main components; solar air collector, drying chamber and air blower. Manufacturing and an analysis of two active double-pass solar air collector integrated with unfinned and helical finned absorbers have been carried out. The helical fins increased the standers solar collector (unfinned) efficiency by about 6%. In five hours for 2 kg of apple slices drying, the final weight of the dried product is 1.237 kg using an unfinned solar collector, while 1.039 kg using helical finned solar collector. Keywords: solar drying, air heater, thermal performance, helical fins.



Drying is the process of removing moisture contents from solid. Solar drying refers to a technique that utilizes incident solar radiation to convert it into thermal energy required for drying purposes. This project presents the design, construction and performance of an indirect type solar dryer for coffee product. In the dryer the air inters into the solar collector from the atmosphere through air inlet hole. This air will be heated in the collector and then pass to the drying chamber through the hole. Then the air exhausts through the outlet hole at the top of the drying chamber. The system designed can handle a capacity of up to 50kg of wet coffee per m2 at a depth of 100 mm. The average sunshine at Bale Robe was found to be 12 hours per day. The daily solar insolation at the site was found to be 5.86kW/m2 of surface per day. By utilizing the solar collector in question and assuming a collector efficiency of 20 %, the total solar energy received is 5.86 kW-hrs/m2 /day or 46.88 kW-hours per day (assuming the sunshine hours per day to be 8 hours). This solar dryer has a collector efficiency of 39.1%, a pick-up efficiency of 49.3%, and a system efficiency of 32.2%. the collector area of the system is calculated to be 1.11m2 and the total length of 1000mm by 300mm. The drying chamber is essentially a cabinetry dryer and measures 1020mm × 800mm × 30mm. It accommodates a drying bin which acts as the holding compartment for the wet coffee to be dried. The base of the drying chamber is made of a block of wood material 50mm deep, since wood is a good thermal insulator. The wood must be well seasoned and pre-treated to ensure it is protected from the humid environment. The air outlet is fitted at the top of the drying chamber which serves as the exit for the moisture ridden air. It is important since it ensures that moisture does not condense at the top of the drying chamber and speeds up the rate of drying through creating the suction effect. The drying bin measures 800mm × 800mm × 20mm.



2018 ◽  
Vol 240 ◽  
pp. 04006 ◽  
Author(s):  
Hocine Mzad ◽  
Abdessalam Otmani ◽  
Abdallah Haouam ◽  
Stanisław Łopata ◽  
Pawel Ocłoń

To understand usage of solar air collector there are factors that have influence on the performance. The goal of this paper is to investigate a solar air collector prototype in order to perform a performance optimization using the possible min imum of equations. The thermal efficiency, fluid outlet temperature, heat increase and heat losses of the collector are calculated depending on the collector geometry, fluid properties, fluid inlet temperature, air flow rate, solar insulation and ambient temperature. The calculations were performed using actual data of temperature, wind speed and the global-horizontal radiation Hh over the year 2011 at the international airport of Annaba city. Comparison of results reveals that optimal efficacy is obtained for south facing panels with an inclination angle ß comprised in the interval [15°, 35°]. These conditions provide a useful energy exceeding 4300 W and an efficiency of about 51 %.



2014 ◽  
Vol 953-954 ◽  
pp. 16-19 ◽  
Author(s):  
Yuttachai Keawsuntia

This research paper presents the experimental results of drying of chili by using the active solar dryer and sun drying because of chili is a commercial agricultural product of Thailand. The active solar dryer consisted of a solar collector, a drying chamber and a chimney. The small fans were installed in the solar collector of active solar dryer to provide the air flow circulated in the solar collector and a drying chamber. Drying of chili of 20 kg from moisture content 84 percent wet basis to 10 percent wet basis following the Thai Agricultural Standard (TAS 3001-2010) showed that the use of the active solar dryer to make the drying time reduced about 28.7 percent compared with sun drying because of the hot air temperature inside the drying chamber higher than the ambient temperature about 10 to 15 . The quality of dried chili from the active solar dryer better than dried chili from sun drying.



2015 ◽  
Vol 10 (3) ◽  
pp. 985-993 ◽  
Author(s):  
F. G Sayyad ◽  
N. R Sardar ◽  
J. P Rathod ◽  
U. A Baria ◽  
B. K Yaduvanshi ◽  
...  

Solar energy represents non-polluting, inexhaustible renewable source of energy that can be utilized economically to supply man's needs for all the time. A solar cooker cum dryer was designed, developed and fabricated. The performance evaluation of the system was carried out. The solar cooker was used as the solar collector for the solar dryer. A solar cooker having size 750mm x 600mm x 150mm has been developed. The solar dryer was designed with 0.49 m2 collector area. The collector angle was calculated for Jalgaon and it is 24.16˚ facing south. Drying chamber of size 750mm x 600mm x 450mm was designed and fabricated. This equipment was tested for cooking of food materials. The various atmospheric and drying parameters were also observed during the testing



Solar Energy ◽  
2002 ◽  
Author(s):  
Elradi A. Musa ◽  
K. Sopian ◽  
Shahrir Abdullah

The double-pass solar collector with porous media in the lower channel provides a higher outlet temperature compared to the conventional single-pass collector. Therefore, the thermal efficiency of the solar collector is increasing. The solar collector can be used for a wide variety of applications such as solar industrial process heat and solar drying of agricultural produce. A theoretical model has been developed for the double-pass solar collector. An experimental setup has been designed and constructed. Comparisons of the theoretical and the experimental results have been conducted. Such comparisons include the outlet temperatures and thermal efficiencies of the solar collector for various design and operating conditions. Close agreement has been obtained between the theoretical and experimental results. In addition, heat transfer and pressure drop relationships have been developed for air following through the porous media. The porous media has been arranged with difference porosities to increase heat transfer, area density and the total heat transfer rate. The heat transfer coefficient and friction factors are strong function of porosity.



2021 ◽  
Vol 1 (5) ◽  
pp. 4-10
Author(s):  
Gedion Habtay ◽  
Maytham A. Al-Neama ◽  
Janos Buzas ◽  
Istvan Farkas

This paper presents the results of an experimental investigation on an indirect active type of solar dryer, using two distinct solar air collector and their impacts on drying agricultural products. The thermal performance of the proposed collectors has been evaluated using the first and second laws of thermodynamics. Experimental observations were done in climatic conditions Gödöllő, Hungary on the 2nd and 9th of October 2017. The experiments were also carried out to dry 2 kg of sliced apples spread over the drying trays. The mas flow rate of air was maintained as 0.038 kg/s and the dryer was operated from 10:00 a.m. to 3:00 p.m. When a double-pass solar air collector's results are compared to a single-pass solar air collector's, it's evident that the double-pass solar air collector produces much more energy and efficiency. The experimental results showed that single-pass and double-pass collectors have daily efficiencies of 42.77% and 56.10%, respectively, with average exergy efficiency values ranging from 31% to 49% for single-pass and 51% to 67% for double-pass. The most significant aspect determining the collectors' thermal efficiency was the temperature rise between the collector outlet and inlet. The average drying efficiencies of the solar dryer for the single and double-pass collectors were evaluated as 12.16% and 16.45%, respectively. The maximum temperature rise for double-pass was determined to be 20 °C, whereas single-pass was found to be 6.5 °C. Furthermore, the highest drying rate was achieved when sliced apples were dried with a double-pass collector mode. It reduced 52% of the water content in the apple in the same amount of time as single-pass drying, compared to 35% in the case of single-pass drying.





2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Felipe Cichetto Tedesco ◽  
Alexandre José Bühler ◽  
Sérgio Wortmann

The growing demand for alternative technologies, of clean and sustainable nature, has fostered the development and improvement of equipment that uses solar energy for the dehydration of seeds and fruits. Such equipment has been used worldwide for hundreds of years; however, it remains uncommon in Serra Gaúcha, a region of great production of grapes and apples for natura consumption in the state of Rio Grande do Sul—Brazil. In order to investigate the economic and technical viability of solar dryers in the Serra Gaúcha, this work has as target the design, simulation, construction, and experimental analysis of an Indirect Passive Solar Dryer with Chimney. The prototype, divided into three parts: solar collector, dehydration chamber, and chimney, was built prioritizing materials of low cost, but that did not compromise its performance. The device was submitted to experiments, which observed: solar collector behavior very close to the simulated one; obtaining a coefficient of performance of 87% in the equipment; satisfactory rise in temperature at the collector outlet comparing to its inlet; and dehydration of apples with a reduction of 89% in mass with 32.78 MJ of energy delivered to the system. The prototype payback period was estimated in two years.



Sign in / Sign up

Export Citation Format

Share Document