Retrofitting for Improving Energy Efficiency: The Embodied Energy Relevance for Buildings’ Thermal Insulation

Author(s):  
Sara Abd Alla ◽  
Vincenzo Bianco ◽  
Federico Scarpa ◽  
Luca A. Tagliafico

Abstract Thermal insulation is a well-known strategy to increase energy efficiency of buildings. This paper considers two archetypes of an apartment block typology largely diffused in the Italian building stock and evaluates the energy savings resulting from the application of three insulation materials: polyurethane foam, rock wool and resin bonded fibre-board. The energy requirements for winter heating and summer cooling are assessed with EnergyPlus and then compared to the embodied energy of the insulation materials. Hence, the energy and carbon paybacks are calculated, and a cost analysis is proposed to provide an insight on the market impact for the retrofit materials’ choice. The apartment block model is analyzed in three main cities (Rome, Milan, Palermo) allowing to assess the climatic conditions impact in terms of minimization of primary energy consumption and environmental emissions. Simulations showed that the thermal insulation has a higher impact on winter heating and slightly affects the summer cooling requirement. In Milan, the refurbishment gains relevance as the energy and carbon payback periods are shorter than those of the city of Palermo characterized by a warmer weather. Considering the embodied energy impact, this method allows to estimate the maximum potential for energy savings in existing buildings and provides an estimation of achievable results in short-medium period.

Author(s):  
Sara Abd Alla ◽  
Vincenzo Bianco ◽  
Federico Scarpa ◽  
Luca A. Tagliafico

Abstract Envelope insulation is a well-known strategy to improve buildings' energy efficiency. This paper considers two archetypes of an apartment block typology largely diffused in the Italian building stock and evaluates the energy savings resulting from the application of three insulation materials: polyurethane foam, rock wool and resin bonded fibre-board. The energy requirements for winter heating and summer cooling are assessed with EnergyPlus and then compared to the embodied energy of the insulation materials. Hence, the energy and carbon paybacks are calculated, and a cost analysis is proposed to provide an insight on the market impact for the retrofit materials' choice. The apartment block model is analyzed in three main cities (Rome, Milan, Palermo) allowing to assess the climatic conditions impact in terms of minimization of primary energy consumption and environmental emissions. Simulations showed that the thermal insulation has a higher impact on winter heating and slightly affects the summer cooling requirement. In Milan, the refurbishment gains relevance as the energy and carbon payback periods are shorter than those of the city of Palermo characterized by a warmer weather. Considering the embodied energy impact, this method allows to estimate the maximum potential for energy savings in existing buildings and provides an estimation of achievable results in short-medium period.


2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


2020 ◽  
Vol 172 ◽  
pp. 15003
Author(s):  
Arda Karasu ◽  
Yaser Hantouch ◽  
Claus Steffan

Energy retrofitting of listed buildings requires a rethink as it is economically and technically complicated to retrofit. The Technische Universität Berlin has 47 buildings with a total net floor area above 500.000 m2 in its central campus, and 60% of them are listed. In Germany, optimizing the energy efficiency of such buildings has not to fulfill the requirements of the energy efficiency regulations. On the one hand, this situation is not corresponding to the national objectives regarding climate adaptation. On the other hand, they have to be retrofitted because of issues like poor energy efficiency and user comfort, and not privileged with special regulations. However, instead of changing the regulations, it is possible to solve the problem by changing the way of thinking. In this regard, rather than retrofitting such buildings directly, a new approach has been developed where the surrounding climatic conditions are optimized. Hereby, a simulation-based concept has been developed with an external transparent envelope. This “climate envelope” creates an intermediate space between outdoor and indoor, where through controlled air movement and passive solar gains, the balance in seasonal energy efficiency can be kept economically without any implementation on the buildings according to the building thermal and CFD simulations. This overall approach activates the yet not exploited capacity of energy savings by listed buildings using intelligent design and saves up to 30% more of primary energy.


2021 ◽  
pp. 45-52
Author(s):  
G.I. Petrov ◽  
V.N. Kornienko ◽  
A.G. Donetskikh

Improving energy efficiency and energy saving in refrigeration technology depends largely on the use of modern thermal insulation materials in the thermal insulation structures of refrigeration pipelines. The article presents a comparative analysis of the thermal characteristics and operational properties of heat-insulating materials used in refrigeration. The features of RUFLEX thermal insulation materials based on foamed synthetic rubber produced from domestic raw materials and their compliance with the requirements of energy efficiency, durability, operational reliability and safety are considered.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 81
Author(s):  
Cassandra Lafond ◽  
Pierre Blanchet

The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.


2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković

In order to demonstrate the environmental impact of the increased flow of thermal insulation materials and facade joinery with improved thermal characteristics, the analysis of the carbon footprint for two scenarios for the needs of the research was done as a consequence of the new regulations on the energy efficiency of the facilities. For each of the analyzed scenarios, a project and an overview of works on the basis of which quantities of construction materials, activities and processes that participate in the construction of the analyzed scenarios were calculated (S1 and S2), were made. The reference object (S1) is designed without thermal insulation layers, the energy class „G“, and the scenario (S2) is designed in the energy class „C“, which according to the new regulations is a condition for the construction of new facilities. The study uses the Life Cycle Analysis (LCA), a methodology that is the basis for Carbon Lifecycle Analysis (LCACO2), or calculation of the carbon footprint of the facility. Construction carbon calculator, Environmental Protection Agency UK, is used to calculate the carbon footprint, and for the calculation of operational energy, the URSA Construction Physics 2 program. The study showed that the embodied carbon for the scenario (S1) is 138,40 tonnes CO2 e, with less impact on the environment. The higher values of the embodied carbon have a scenario (S2) of 148,20 tonnes CO2 e. The carbon imprint from the phase of construction, or less impact on the environment, has a scenario (S1). However, after ten years of using the facility, the scenario (S1) due to the larger carbon footprint from the operational phase becomes a scenario with a higher environmental impact, with a total carbon footprint of 186,16 tonnes CO2 e, and the scenario (S2) after ten years of use of the facility has a total carbon footprint of 163,86 tonnes CO2 e. The scenario (S1) and (S2) achieve the same values of the total carbon footprint after 3,05 years of use of the facility and (S2) has since then become a better choice from the aspect of the environment. The research has shown that the embodied carbon is neglected in the calculation of the environmental impact of the facility, as well as the average when the benefits can be expected from the application of measures for energy-efficient buildings. The research also points to the need for low-carbon thermal insulation materials to bridge the gap between the demand for the extinguishing of buildings on the one hand and the efforts to reduce greenhouse gas emissions to mitigate climate change.


2021 ◽  
Author(s):  
◽  
Aleksejs Prozuments

Energy efficiency in the building stock is a substantial contributor to infrastructure sustainability. In Latvia, buildings’ thermal energy use for space heating accounts for 80 % of total building energy use in the cold season. Therefore, reducing thermal energy consumption for space heating needs through the implementation of energy efficiency measures, enforcement of local building codes and regulations can ultimately lead to cost savings for building owners and stakeholders. The present PhD Thesis introduces a methodology for evaluation of thermal energy saving potential in the long run across residential, public, and industrial building stock under various thermal energy consumption compliance scenarios. These scenarios were developed based on three different building code protocols with a 10-year forecast analysis. Evaluation of the proposed building code implementation practices and their feasibility in Latvian building stock is discussed for these buildings with regards to their long-term thermal energy savings potential.


2010 ◽  
Vol 16 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Jorge S. Carlos ◽  
Helena Corvacho

A study on thermal retrofit of Portuguese elementary school buildings is presented. The type of school under analysis is one adopted by a large construction campaign that began in the 1940's. This building stock has a very poor thermal performance and their retrofit was evaluated starting with a case study of a school in the central region of Portugal, where some experimental measures were performed and a calculation method was applied for the heating energy consumption estimation. A solution for the thermal retrofit of the school building external envelope was optimized and the effect on heating energy consumption was evaluated, using ECOTECT, resulting in a reduction of 52% of heating energy needs. The national impact of the thermal retrofit of the whole building stock was characterised in terms of energy savings. Finally, the pre‐heating of the ventilation air was also tested as a complementary measure and its effect evaluated. The solution tested may provide up to 1000 kWh/year of extra heat gains by pre‐heating the ventilation air. It must be underlined though that the performance of these systems is dependent on the thermal properties of their components so higher reductions can be achieved with the improvement of these properties. Santrauka Straipsnyje pateikiami Portugalijos pradines mokyklos šiluminio atnaujinimo tyrimai. Analizuojamos mokyklos tipas yra vienas iš taikytu po 1940 metu prasidejusioje plačioje statybos kampanijoje. Šios pastatu grupes šilumines charakteristikos yra labai prastos. Ju atnaujinimo vertinimas buvo pradetas nuo centrineje Portugalijoje esančios mokyklos, kurioje buvo igyvendintos kai kurios eksperimentines priemones, ir energijos sanaudoms nustatyti pritaikytas skaičiavimo metodas. Pastato išoriniu atitvaru šiluminio atnaujinimo sprendimas buvo optimizuotas ir jo itaka šilumines energijos sanaudoms nustatyta naudojant ECOTECT. Šilumines energijos poreikis sumažejo 52 %. Iš viso pastatu fondo šiluminio atnaujinimo itaka nacionaliniu mastu vertinta sutaupytos energijos kiekiu. Pabaigoje kaip papildoma priemone buvo išbandytas pirminis vedinamo oro pašildymas, nustatytas jo naudingumas. Išbandytasis pirminis vedinamo oro pašildymas gali suteikti iki 1000 kWh/metus papildomo išsiskiriančio šilumos kiekio. Pabrežtina, kad nors šiu sistemu veikimo charakteristikos priklauso nuo ju komponentu šiluminiu savybiu, gerinant šias savybes galima daugiau sumažinti energijos sanaudu.


Author(s):  
Filomena Pietrapertosa ◽  
Marco Tancredi ◽  
Michele Giordano ◽  
Carmelina Cosmi ◽  
Monica Salvia

The European Union 2050 climate neutrality goal and the climate crisis require coordinated efforts to reduce energy consumption in all sectors, and mainly in buildings greatly affected by the increasing temperature, with relevant CO2 emissions due to inefficient end-use technologies. Moreover, the old building stock of most countries requires suited policies to support renovation programs aimed at improving energy performances and optimize energy uses. A toolbox was developed in the framework of the PrioritEE project to provide policy makers and technicians with a wide set of tools to support energy efficiency in Municipal Public Buildings. The toolbox, available for free, was tested in the partners’ communities, proving its effectiveness. The paper illustrates its application to the Potenza Municipality case study in which the online calculator DSTool (the core instrument of the toolbox) was utilized to select and prioritize the energy efficiency interventions in public buildings implementable in a three-year action plan in terms of costs, energy savings, CO2 emissions’ reduction and return on investments. The results highlight that improvements in the building envelopes (walls and roofs), heating and lighting and photovoltaic systems allow reducing CO2 emission approximately 644 t/year and saving about 2050 MWh/year with a total three-year investment of 1,728,823 EUR.


Sign in / Sign up

Export Citation Format

Share Document