Multiple Frequency Analysis Methods for Blade Tip-Timing Data Analysis

Volume 2 ◽  
2004 ◽  
Author(s):  
Jon Gallego Garrido ◽  
Grigorios Dimitriadis

Blade Tip-Timing (BTT) is a method for the measurement of blade vibration in rotating bladed assemblies such as those found in turbomachinery. The system aims to replace strain gauge technology. However all current BTT analysis methods fail to recover the correct frequencies when two blade modes are excited simultaneously by a synchronous vibration. In this paper, five new methods that can recover simultaneous frequencies from BTT data are presented. The methods are based on the auto-regressive approach. The approached make use of data either from a single blade and single revolution or from multiple revolutions. Furthermore, some of the methods are designed to allow for the presence of measurement errors. The techniques are validated on three test cases in which simulated data was used. It is shown that most of the methods produce accurate estimates for the vibration frequency, even in the presence of significant noise levels, provided that a suitable amount of the response waveform is measured. The most consistent estimates are obtained from the methods that make use of data from multiple revolutions.

Author(s):  
Jie Tian ◽  
Xiaopu Zhang ◽  
Yong Chen ◽  
Peter Russhard ◽  
Hua Ouyang

Abstract Based on the blade vibration theory of turbomachinery and the basic principle of blade timing systems, a sparse reconstruction model is derived for the tip timing signal under an arbitrary sensor circumferential placement distribution. The proposed approach uses the sparsity of the tip timing signal in the frequency domain. The application of compressive sensing in reconstructing the blade tip timing signal and monitoring multi-mode blade vibrations is explored. To improve the reconstruction effect, a number of numerical experiments are conducted to examine the effects of various factors on synchronous and non-synchronous signals. This enables the specific steps involved in the compressive sensing reconstruction of tip timing signals to be determined. The proposed method is then applied to the tip timing data of a 27-blade rotor. The results show that the method accurately identifies the multi-mode blade vibrations at different rotation speeds. The proposed method has the advantages of low dependence on prior information, insensitivity to environmental noise, and simultaneous identification of synchronous and non-synchronous signals. The experimental results validate the effectiveness of the proposed approach in engineering applications.


2007 ◽  
Vol 2007 ◽  
pp. 1-11 ◽  
Author(s):  
J. Gallego-Garrido ◽  
G. Dimitriadis ◽  
J. R. Wright

Blade tip timing is a technique for the measurement of vibrations in rotating bladed assemblies. Although the fundamentals of the technique are simple, the analysis of data obtained in the presence of simultaneously occurring synchronous resonances is problematic. A class of autoregressive-based methods for the analysis of blade tip timing data from assemblies undergoing two simultaneous resonances has been developed. It includes approaches that assume both sinusoidal and general blade tip responses. The methods can handle both synchronous and asynchronous resonances. An exhaustive evaluation of the approaches was performed on simulated data in order to determine their accuracy and sensitivity. One of the techniques was found to perform best on asynchronous resonances and one on synchronous resonances. Both methods yielded very accurate vibration frequency estimates under all conditions of interest.


2014 ◽  
Vol 30 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Krzysztof Kaźmierczak ◽  
Radosław Przysowa

Abstract Blade Tip Timing (BTT) is a non-intrusive method to measure blade vibration in turbomachinery. Time of Arrival (TOA) is recorded when a blade is passing a stationary sensor. The measurement data, in form of undersampled (aliased) tip-deflection signal, are difficult to analyze with standard signal processing methods like digital filters or Fourier Transform. Several indirect methods are applied to process TOA sequences, such as reconstruction of aliased spectrum and Least-Squares Fitting to harmonic oscillator model. We used standard sine fitting algorithms provided by IEEE-STD-1057 to estimate blade vibration parameters. Blade-tip displacement was simulated in time domain using SDOF model, sampled by stationary sensors and then processed by the sinefit.m toolkit. We evaluated several configurations of different sensor placement, noise level and number of data. Results of the linear sine fitting, performed with the frequency known a priori, were compared with the non-linear ones. Some of non-linear iterations were not convergent. The algorithms and testing results are aimed to be used in analysis of asynchronous blade vibration.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Felix Figaschewsky ◽  
Benjamin Hanschke ◽  
Arnold Kühhorn

In modern compressors, the assessment of blade vibration levels as well as health monitoring of the components are fundamental tasks. Traditionally, this assessment is done by the application of strain gauges (SG) to some blades of the assembly. In contrast to SGs, blade tip timing (BTT) offers a contactless monitoring of all blades of a rotor and there is no need of a telemetry system. A major issue in the interpretation of BTT data is the heavily undersampled nature of the signal. Usually, newly developed BTT algorithms are tested with sample data created by simplified structural models neglecting many of the uncertainties and disturbing influences of real applications. This work focuses on the creation of simulated BTT datasets as close as possible to real case measurements. For this purpose, a subset of nominal system modes (SNM) representation of a compressor rotor is utilized. This model is able to include a large number of features present in real measurements, such as mistuning, static blade deflections due to centrifugal loads, aerodynamic damping, and multiple mode resonances. Additionally, manufacturing deviations of the blade geometry, probe positioning errors (PPEs) in the BTT system, and noise in the time of arrivals (TOAs) are captured by the BTT simulation environment. The main advantage of the created data is the possibility to steadily increase the signal complexity. Starting with a “perfect” signal the simulation environment is able to add different uncertainties one after the other. This allows the assessment of the influence of different features occurring in real measurements on the performance and accuracy of the analysis algorithms. Finally, a comparison of simulated BTT data and real data acquired from a rig test is shown to validate the presented approach of BTT data generation.


Author(s):  
Felix Figaschewsky ◽  
Benjamin Hanschke ◽  
Arnold Kühhorn

In modern compressors the assessment of blade vibration levels as well as health monitoring of the components are fundamental tasks. Traditionally, this assessment is done by the application of strain gauges to some blades of the assembly. In contrast to strain gauges, blade tip timing (BTT) offers a contactless monitoring of all blades of a rotor and there is no need of a telemetry system. A major issue in the interpretation of BTT data is the heavily undersampled nature of the signal. Usually, newly developed BTT algorithms are tested with sample data created by simplified structural models neglecting many of the uncertainties and disturbing influences of real applications. This work focuses on the creation of simulated BTT datasets as close as possible to real case measurements. For this purpose a subset of nominal system modes (SNM) representation of a compressor rotor is utilized. This model is able to include a large number of features present in real measurements, such as mistuning, static blade deflections due to centrifugal loads, aerodynamic damping and multiple mode resonances. Additionally, manufacturing deviations of the blade geometry, probe positioning errors in the BTT system and noise in the time of arrivals (TOAs) are captured by the BTT simulation environment. The main advantage of the created data is the possibility to steadily increase the signal complexity. Starting with a “perfect” signal the simulation environment is able to add different uncertainties one after the other. This allows the assessment of the influence of different features occurring in real measurements on the performance and accuracy of the analysis algorithms. Finally, a comparison of simulated BTT data and real data acquired from a rig test is shown to validate the presented approach of BTT data generation.


Author(s):  
Vsevolod Kharyton ◽  
Grigorios Dimitriadis ◽  
Colin Defise

The Blade Tip Timing method (BTT) is a well-known approach permitting individual blade vibration behavior characterization. The technique is becoming increasingly popular among turbomachinery vibration specialists. Its advantages include its non-intrusive nature and its capability of being used for long-term monitoring, both in on-line and offline analysis. However, the main drawback of BTT is frequency aliasing. Frequency aliasing effects in tip timing can be reduced by means of the application of different methods from digital signal analysis that can exploit the non-uniform nature of the data sampled by BTT. This non-uniformity is due to the fact that an optimization of the circumferential distribution of BTT probes is usually required in order to improve the data quality for targeted modes of blade vibration and/or orders of excitation. The BTT data analysis methods considered in this study are the non-uniform Fourier transform, the minimum variance spectrum estimator approach, a multi-channel technique using in-between samples interpolation, the Lombe-Scargle periodogram and an iterative variable threshold procedure. These methods will be applied to measured data representing quite a large scope of events occurring during gas-turbine compressor operation, e.g. synchronous engine order resonance crossing, rotating stall, suspected limit-cycle oscillations. Finally, the frequency estimates obtained from all these methods will be summarized.


Author(s):  
Cyrille Ste´phan ◽  
Marc Berthillier ◽  
Joseph Lardie`s ◽  
Arnaud Talon

In turbomachine industry, bladed assembly vibration measurements are very important for blades behaviour estimation. These measurements are generally obtained from strain gauges. However, one of the most promising methods for the analysis of blade vibrations in rotating bladed assemblies is the Blade Tip Timing or Optical Blade Vibration Measurement method. A set of optical sensors is mounted on an engine casing, in front of a disc, and measures the times of arrival of each blade. These timings are then used to compute the vibrations of the blades. However the fundamental problem for spectral analysis of blade tip timing data is that the signals are undersampled and aliased. We propose here a new method for spectral estimation of blades responses from tip timing data that overcome these difficulties. The method proposed in this communication is based on the use of a minimum variance filter associated with an iterative updating of the autocorrelation matrix. That allows to process correctly a signal even if the number of known signal samples is less than equivalent Nyquist criterion. This approach is suitable for spectral analysis of undersampled and aliased signals. Perfomances of the spectral estimator have been evaluated for one simulated and one experimental test cases. The method seems very promising for the monitoring of mistuned bladed discs.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
J. Gallego-Garrido ◽  
G. Dimitriadis ◽  
I. B. Carrington ◽  
J. R. Wright

Blade tip timing is a technique for the measurement of vibrations in rotating bladed assemblies. In Part I of this work a class of methods for the analysis of blade tip timing data from bladed assemblies undergoing two simultaneous synchronous resonances was developed. The approaches were demonstrated using data from a mathematical simulation of tip timing data. In Part II the methods are validated on an experimental test rig. First, the construction and characteristics of the rig will be discussed. Then, the performance of the analysis techniques when applied to data from the rig will be compared and analysed. It is shown that accurate frequency estimates are obtained by all the methods for both single and double resonances. Furthermore, the recovered frequencies are used to calculate the amplitudes of the blade tip responses. The presence of mistuning in the bladed assembly does not affect the performance of the new techniques.


Sign in / Sign up

Export Citation Format

Share Document