Deep-Cryogenic Treatment and Effect of Austenizing Temperature on Tribological Performance of P/M High-Speed Steel

Author(s):  
B. Podgornik ◽  
V. Leskovsˇek ◽  
J. Vizˇintin

The aim of our work was to investigate the influence of deep-cryogenic treatment parameters (treatment time and temperature) and austenizing temperature on the tribological performance of powder-metallurgy (P/M) high-speed steel. Special emphasis was put on abrasive wear resistance and resistance to galling under dry sliding conditions. Abrasive wear resistance was tested under reciprocating sliding conditions using alumina ball, while galling resistance against austenitic stainless steel was determined in a load-scanning test rig. Tribological test were evaluated in terms of high-speed steel wear volume, coefficient of friction under reciprocating sliding, friction variation with load, and critical load for galling initiation and stainless steel transfer layer formation.

2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2013 ◽  
Vol 594-595 ◽  
pp. 1117-1121
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Merey Rakhadilov

In this work the influence of electrolytic-plasma nitriding on the abrasive wear-resistance of R6M5 high-speed steel were under research. We registered that after electrolytic-plasma nitriding on R6M5 steel surface modified layer is formed with 20-40 μm thickness and with increased microhardness of 9000-12200 MPa. Testing mode for the nitrided samples high-speed steel on abrasive wear developed. It is established, that electrolyte-plasma nitriding allows to increase wear-resistance of R6M5 steel surface layer comparing to original. It was determined that abrasive wear-resistance of R6M5 steel surface layer is increased to 25% as a result of electrolytic plasma nitriding. Thus, studies have demonstrated the feasibility and applicability of electrolytic-plasma nitriding in order to improve cutting tools work resource, working under friction and wear conditions.


2019 ◽  
Vol 40 (5) ◽  
pp. 392-395 ◽  
Author(s):  
G. V. Ratkevich ◽  
L. E. Afanasieva ◽  
I. A. Smolyakova ◽  
M. V. Novoselova

2015 ◽  
Vol 798 ◽  
pp. 395-401 ◽  
Author(s):  
S.A. Sonawane ◽  
V.K. Tripathi ◽  
S.D. Ambekar

The technique of cryogenic treatment of cutting tools is an inexpensive permanent treatment process that improves the physical and mechanical properties of materials such as metals, plastics and composites. It promotes the transformation of the retained austenite into martensite at cryogenic temperatures and also facilitates the formation of fine carbides in the martensite, thereby improving the wear resistance.This paper compares the wear behaviour of hardened and triple tempered AISI M2 high-speed steel and the same steel that was hardened and triple tempered in conjunction with a deep-cryogenic treatment at 88K for 16 and 24 hours. Test materials were subjected to wear tests on pin-on-disc machine in dry sliding condition. Equations are developed for predicting the wear resistance of M2 tool steel material. The hardness data wear loss and microstructure throw light on the improvement in wear resistance property of the M2 tool steel.It is demonstrated that the properties of the cryogenically treated samples are superior to those of conventionally treated. 24 hours cryogenically treated hardened and triple tempered M2 tool steel shows excellent wear resistance properties over 16 hours cryo-treated M2 and conventionally treated M2 tool steel material.


2019 ◽  
Vol 13 (3) ◽  
pp. 213-217
Author(s):  
Sanja Šolić ◽  
Zdravko Schauperl ◽  
Vlado Tropša

High speed steel (HSS) is a very important industrial tool material and has been constantly improved for different wear resistance applications and cutting tools, i.e. drills, milling cutters, hobs and for the cutting tools in which the economical cutting speed is too low for choosing the carbide tools. The properties of HSS depend significantly on the parameters of the conducted heat treatment. In this paper, the influence of deep cryogenic treatment in combination with nitriding of metallurgical powder metallurgy HSS on the wear resistance was measured. Additionally, the cutting performance in a single point cutting tool machinability test at the configuration of the dry low-speed turning of steel was investigated. The results showed that deep cryogenic treatment itself, and in combination with nitriding, resulted in the reduction of the wear rate. The results of the single point cutting tool machinability test showed that deep cryogenic treated and nitrided HSS inserts performed worse than the classically heat-treated inserts and deep cryogenic treated HSS inserts exhibited approximately the same flank wear as the nitrided ones.


2013 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
A. F. Hernandez ◽  
C. R. M. Silva ◽  
J. A. Araujo ◽  
J. D. B. De Mello

The Deep Cryogenic Treatment (DCT) has been used for improvement of steel mechanical properties, basically the abrasive wear resistance. At this work the cryogenic treatment at -190oC for 20 hours was applied, after conventional heat treatment, to improve its abrasive wear resistance. The specimens, divided in two groups, had been austenitized for forty five minutes at 965oC and 1065oC, respectively, then quenched in oil at room temperature. Afterwards they were tempered at 565oC for 90 minutes, and then cooled in air. Subsequently some samples were treated cryogenically, and some of them were submitted to a new cycle of tempering at 565oC for 90 minutes. The performed experiment included: hardness brinell, Xraydifratometry, metallography and micro-abrasive wear test. Variations in the microstructure with an improvement in the abrasive wear coefficient were found. These variations are probably a positive effect of the DCT on the samples microstructure. The microstructure were transformed from blocks of parallel lath martensite to small parallel or almost parallel packages of fine needles forming austenite. Traces of previous or retained austenite were found delimiting the grains. It is presumed that micro-carbide homogeneously distributed in the matrix and in the grain´s contours of the retained austenite was formed.


Alloy Digest ◽  
2019 ◽  
Vol 68 (4) ◽  

Abstract Sandvik APM 2730 is a powder metallurgical alloyed hot-isostatic-pressed high-speed tool steel with abrasive wear resistance and high-compressive strength. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-763. Producer or source: Sandvik Steel Company.


Sign in / Sign up

Export Citation Format

Share Document