Multiobjective Pareto-Based Optimization of pMUT Hydrophone With Piezoelectric Active Diaphragm

Author(s):  
Sergey Shevtsov ◽  
Shun-Hsyung (Stephen) Chang ◽  
Valery Kalinchuk ◽  
Igor Zhilyaev ◽  
Maria Shevtsova

The design of high-sensitive hydrophones is one of the research interests in underwater acoustics. Due to progress of micro- and nanotechnology the most attention of researchers is attracted by the transducers that use the micro-electromechanical system (MEMS) concept. Piezoelectric micro-machined ultrasonic transducers (pMUTs) present a new approach to sound detection and generation that can overcome the shortcomings of conventional transducers. For accurate ultrasound field measurement, small size hydrophones which are smaller than the acoustic wavelength are required for providing an omnidirectional response and avoid spatial averaging. This paper presents some results of multiobjective optimization for membrane-type piezoceramic MEMS based transducers. We investigate the miniaturized membrane-type sensor with perforated holes in the active PZT and intermediate membranes, with the protective plates and a vacuum chamber. An influence of the protective plate elastic and viscous properties, the dimensions and the relative area of the perforated holes on the sensitivity’s frequency response of the hydrophone was studied for the broadening and equalizes the operating frequency band. We optimize these key parameters using the Pareto approach with the finite element (FE) model of coupled piezoelectric-acoustic problem. Finally, the set of optimized hydrophone structures and some examples of obtained sensitivity frequency response are demonstrated.

2015 ◽  
Vol 727-728 ◽  
pp. 660-665
Author(s):  
Shun Hsyung Chang ◽  
Fu Tai Wang ◽  
Jiing Kae Wu ◽  
Sergey N. Shevtsov ◽  
Igor V. Zhilyaev ◽  
...  

The paper presents some results of multi-objective optimization for the multilayered membrane-type piezoceramic MEMS based transducers with perforated active PZT and intermediate diaphragms, covered by the protective plates, and a vacuum chamber. An influence of the protective plate elastic and viscous properties, the dimensions and the relative areas of the perforated holes on the sensitivity’s frequency response of the hydrophone was studied for the broadening and equalizes the operating frequency band. We optimize the key design’s parameters using the Pareto approach with the finite element (FE) model of coupled piezoelectric-acoustic problem for the hydrophone.


1992 ◽  
Vol 25 (3) ◽  
pp. 155
Author(s):  
H. Ohigashi ◽  
T. Itoh ◽  
K. Kimura ◽  
T. Nakanishi ◽  
M. Suzuki

2013 ◽  
Vol 281 ◽  
pp. 112-115 ◽  
Author(s):  
Dan Jin ◽  
Zhao Hui Li

Wedge-shaped transducers have been widely used in industry as probes for ultrasonic flowmeters or for ultrasonic flaw detectors. But by now, few studies have focused on the influence to the performance of the wedge-shaped transducers brought by their limited size. In this paper, the effect of the shape and size of wedge-shaped substrates on the whole transducer system is discussed and the shape and size of a transducer (0.5MHz) is optimized to eliminate the influence of the boundary effect by using a 2-D Finite Element (FE) model. Lastly, wedge-shaped transducers have been manufactured for experiment which shows a good agreement with the simulation.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Aditya A. Walvekar ◽  
Neil Paulson ◽  
Farshid Sadeghi ◽  
Nick Weinzapfel ◽  
Martin Correns ◽  
...  

Large bearings employed in wind turbine applications have half-contact widths that are usually greater than 1 mm. Previous numerical models developed to investigate rolling contact fatigue (RCF) require significant computational effort to study large rolling contacts. This work presents a new computationally efficient approach to investigate RCF life scatter and spall formation in large bearings. The modeling approach incorporates damage mechanics constitutive relations in the finite element (FE) model to capture fatigue damage. It utilizes Voronoi tessellation to account for variability occurring due to the randomness in the material microstructure. However, to make the model computationally efficient, a Delaunay triangle mesh was used in the FE model to compute stresses during a rolling contact pass. The stresses were then mapped onto the Voronoi domain to evaluate the fatigue damage that leads to the formation of surface spall. The Delaunay triangle mesh was dynamically refined around the damaged elements to capture the stress concentration accurately. The new approach was validated against previous numerical model for small rolling contacts. The scatter in the RCF lives and the progression of fatigue spalling for large bearings obtained from the model show good agreement with experimental results available in the open literature. The ratio of L10 lives for different sized bearings computed from the model correlates well with the formula derived from the basic life rating for radial roller bearing as per ISO 281. The model was then extended to study the effect of initial internal voids on RCF life. It was found that for the same initial void density, the L10 life decreases with the increase in the bearing size.


2021 ◽  
pp. 107754632110381
Author(s):  
Yousif Badri ◽  
Sadok Sassi ◽  
Mohammed Hussein ◽  
Jamil Renno

One of the least investigated approaches in passive vibration control is the possibility of combining different types of dampers that use different damping principles. Such a combination process, if wisely designed and implemented, has the potential to increase the damping performance and extend the damper’s application. The primary purpose of this work is to experimentally and numerically investigate the damping behavior of a novel Fluid-Impact Hybrid Damper. This damper combines a conventional Viscous Fluid Damper with a Particle-Impact Damper. The Fluid-Impact Hybrid Damper comprises a 3D-printed plastic box attached to the Viscous Fluid Damper’s moving rod and filled with stainless steel balls. An experimental setup was designed to drive the Viscous Fluid Damper’s rod into harmonic oscillations at different frequencies (1, 2, 4, 6, and 8 Hz). The number of balls was changed three times (5, 10, and 15) to assess the effect of this parameter on the damping performance of the Fluid-Impact Hybrid Damper. A finite element model of the Fluid-Impact Hybrid Damper was developed using LS-Dyna explicit simulation program. The objective of the FE model is to investigate the elastoplastic balls-box collisions using a piecewise-linear plasticity material model. For both the experimental and numerical results, the Frequency Response Function was considered as the main comparison component for a set of force-independent results. The measured Frequency Response Functions showed a noticeable reduction in amplitude at the system’s natural frequency (2 Hz), with an acceptable accuracy between the two approaches.


Author(s):  
Somashekhar S. Hiremath ◽  
M. Singaperumal ◽  
R. Krishna Kumar

Jet pipe electrohydraulic servovalve finds main application in feedback control system working on jet engine and fighter aircrafts. The analyzed jet pipe electrohydraulic servovalve is used in precise fuel control applications in gas turbine engine. This paper gives a new approach for servovalve modeling with the hydrostatic fluid elements in achieve steady state operation. The actual flow required to achieve the force balance is presented analytically. FE model gives the relationship between the spool and jet pipe position in achieving the steady state operation. The spool end cavity volume changes are presented.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Blaine A. Christiansen ◽  
Philip V. Bayly ◽  
Matthew J. Silva

Vibrational loading can stimulate the formation of new trabecular bone or maintain bone mass. Studies investigating vibrational loading have often used whole-body vibration (WBV) as their loading method. However, WBV has limitations in small animal studies because transmissibility of vibration is dependent on posture. In this study, we propose constrained tibial vibration (CTV) as an experimental method for vibrational loading of mice under controlled conditions. In CTV, the lower leg of an anesthetized mouse is subjected to vertical vibrational loading while supporting a mass. The setup approximates a one degree-of-freedom vibrational system. Accelerometers were used to measure transmissibility of vibration through the lower leg in CTV at frequencies from 20Hzto150Hz. First, the frequency response of transmissibility was quantified in vivo, and dissections were performed to remove one component of the mouse leg (the knee joint, foot, or soft tissue) to investigate the contribution of each component to the frequency response of the intact leg. Next, a finite element (FE) model of a mouse tibia-fibula was used to estimate the deformation of the bone during CTV. Finally, strain gages were used to determine the dependence of bone strain on loading frequency. The in vivo mouse leg in the CTV system had a resonant frequency of 60Hz for ±0.5G vibration (1.0G peak to peak). Removing the foot caused the natural frequency of the system to shift from 60Hzto70Hz, removing the soft tissue caused no change in natural frequency, and removing the knee changed the natural frequency from 60Hzto90Hz. By using the FE model, maximum tensile and compressive strains during CTV were estimated to be on the cranial-medial and caudolateral surfaces of the tibia, respectively, and the peak transmissibility and peak cortical strain occurred at the same frequency. Strain gage data confirmed the relationship between peak transmissibility and peak bone strain indicated by the FE model, and showed that the maximum cyclic tibial strain during CTV of the intact leg was 330±82με and occurred at 60–70Hz. This study presents a comprehensive mechanical analysis of CTV, a loading method for studying vibrational loading under controlled conditions. This model will be used in future in vivo studies and will potentially become an important tool for understanding the response of bone to vibrational loading.


Sign in / Sign up

Export Citation Format

Share Document