Influence of Drying Conditions and Mathematical Models on the Thin-Layer Drying of Mushrooms

Author(s):  
A. Stegou-Sagia ◽  
D. V. Fragkou

In the present research, experimental data from several studies about drying behavior of mushrooms have been selected and used to compare different drying methods and different mathematical thin layer drying models to simulate mushroom drying rates. The white button (Agaricus Bisporus), the oyster (Pleurotus Ostreatus) and the milky mushroom slices have been considered for drying in different dryers such as hot air cabinet dryer and fluidized bed dryer with different slice thicknesses, drying air temperatures (45 °C to 90 °C) and drying air velocities (0.2 m/s to 5 m/s). The entire drying process has taken place in the falling rate period, assuming that internal mass transfer occurred by diffusion in mushroom slices. The study shows that the drying air temperature and the drying air velocity have an effect on the moisture removal from mushrooms and also on the drying time. Mathematical models have been proved to be useful for design and analysis of heat and mass transfer during drying processes. All the drying models considered in this study could adequately represent the thin layer drying behavior of mushrooms. Furthermore, as it is obvious, any type of mushrooms has its own most suitable model.

Author(s):  
Abdul Wasim Noori ◽  
Mohammad Jafar Royen ◽  
Juma Haydary

This paper aims to investigate the effect of climate conditions such as ambient temperature, humidity, pressure, sun radiation and pollution on sliced apples quality and drying time which are dried in an indirect forced cabinet solar drying (IFCSD) and open sun drying (OSD) systems. Both experiments were implemented at same place (Kabul, Afghanistan) and time. The IFCSD yield for saving time is 42.8 % which is more effective than drying in the OSD system. Simultaneously with the decreasing of sliced apple weight from 512.9 g down to 73.9 g, the water activity decreased from 0.955 down to 0.355 in the IFCSD system. For OSD system, the sample weight decreased from 512.6 g down to 78.4 g and its water activity from 0.955 down to 0.411. On the experiment day the average sun radiation was 571 w/m2 . The pressure drop between inlet and outlet of the dryer was 0.1 kPa. Different thin-layer mathematical models were investigated to identify the best model fitting the experimental data. The mathematical models’ performances were investigated by comparing the coefficient of determination (R 2 ), reduced chi-square (X2 ) and root mean square error (RMSE) coefficients. From all 11 applied thin-layer drying models the Page, Approximation diffusion, Verma et al and Midilli and Kacuk models are more fitted to our data.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiao-Kang Yi ◽  
Wen-Fu Wu ◽  
Ya-Qiu Zhang ◽  
Jun-Xing Li ◽  
Hua-Ping Luo

A mathematical modeling of thin-layer drying of jujubes in a convective dryer was established under controlled conditions of temperature and velocity. The drying process took place both in the accelerating rate and falling rate period. We observed that higher temperature reduced the drying time, indicating higher drying rates of jujubes. The experimental drying data of jujubes were used to fit ten different thin-layer models, then drying rate constants and coefficients of models tested were determined by nonlinear regression analysis using the Statistical Computer Program. As for all the drying models, the Weibull distribution model was superior and best predicted the experimental values. Therefore, this model can be used to facilitate dryer design and promote efficient dryer operation by simulation and optimization of the drying processes. The volumetric shrinkable coefficient of jujubes decreased as the drying air temperature increased.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012033
Author(s):  
C L Hii ◽  
C Govind ◽  
C L Chiang ◽  
D Mohammad

Abstract Convective drying is typically used to dry shallot (Allium cepa) commercially. However, a long drying time with a relatively low efficiency has led to the pursuit of new and improved drying methods. Microwave drying was chosen to be used due to its numerous advantages such as improved drying time, high drying efficiency and better product quality. In this research, three microwave power (180 W, 300 W, 450 W) and convective drying at 100°C were used. Results showed that drying kinetics (moisture content and drying rates) decreased the fastest at higher microwave power and the slowest using convective drying. In order to determine the best model to describe the thin-layer drying kinetics, four semi-empirical models were used namely Newton, Page, Logarithmic and Two-term models. Page model was found to be the best in describing the thin-layer microwave drying kinetics. Effective diffusivity values increased with higher microwave power and were found to be in the range of 6.62 × 10−6 m2/s to 3.69 × 10−5 m2/s with convective drying being the lowest (6.62 × 10−6 m2/s) and 450W being the highest (3.69 × 10−5 m2/s). Microwave drying is therefore able to improve drying kinetics compared to convective drying.


2021 ◽  
Vol 4 (2) ◽  
pp. 98-107
Author(s):  
A. I. Gbasouzor ◽  
J. E. Dara ◽  
C. O. Mgbemena

ARS-680 environmental chamber was employed in this study to determine the drying behavior of sliced ginger rhizomes. Blanched and unblanched treated ginger rhizomes were considered at drying temperature of 40 °C for a period of 2 – 24 h. Linear and non-linear regression analyses were employed to establish the correlation that exits between the drying time and the moisture ratio. Correlation analysis, root mean square error (RMSE) and standard error of estimate (SEE) analysis were chosen in selecting the best thin layer drying models. Higher values of determination coefficient (R2) show goodness of fit and lower values of SEE implies better correlation; and RMSE values were also utilized in determining the goodness of fit. The drying data of the variously treated ginger samples were fitted into the twelve thin layer drying models and the data obtained were fitted by multiple non-linear regression technique. Blanched treated sample exhibited a better drying behavior losing about 82.87 % moisture content compared with unbleached sample that lost about 62.03 % of moisture content. Two-term exponential drying model proved to be the most suitable model for predicting the drying behavior of ginger rhizome. The model exhibited high R2 values of 0.9349-0.9792 (which are close to unity) for both blanched and unbleached samples. Also, it recorded relatively low values of RMSE and SEE (3.6865 - 2.0896 and 3.6564-2.7486 respectively) for both treatments.  


2012 ◽  
Vol 192 ◽  
pp. 51-56
Author(s):  
Zhi Qiang Guan ◽  
Xiu Zhi Wang ◽  
Min Li ◽  
Xiao Qiang Jiang

A drying experiment of litchi pulp was done with a self-built heat-pump drying system. A few commonly-used thin-layer drying models for foods were linearized and fitted with the drying experimental data to select a relatively optimal model of depicting the relationship between moisture ratio and drying time of the heat-pump drying of litchi pulp. It was found that the Page model is relatively optimal. The multivariate linear regression approach was employed to solve for the parameters of the Page model based on experimental data and an experimental verification was conducted; the verification results show that the predicted values of the Page model have a good fitness with the measured values and thus the Page model can predict more accurately the moisture ratio and drying rate of litchi pulp in a heat-pump drying process.


2021 ◽  
Vol 8 (2) ◽  
pp. 53-62
Author(s):  
Hendri Syah ◽  
Armansyah Halomoan Tambunan ◽  
Edy Hartulistiyoso ◽  
Lamhot Parulian Manalu

The objectives of this study were to determine a suitable thin layer drying model to describe the drying kinetics of Guazuma ulmifolia leaves and determine the mass transfer parameters of Guazuma ulmifolia leaves. The drying of Guazuma ulmifolia leaves was conducted in a laboratory scale dryer with various temperature (40oC, 50oC, and 60oC) and relative humidity (30%, 40%, 50% and 60%). Five drying models, namely, Newton, Henderson and Pabis, Page, Midilli-Kucuk, and Verma et al. were fitted to the drying data. The drying curve of guazuma leaves did not show a constant drying period during the drying period. The models suitability were compared base on coefficient of determination (R2), root square mean errors (RSME), and reduced mean square of deviation (X2). It was found that, among the models evaluated, the Midilli and Kucuk model is the best to describe the drying kinetics of Guazuma ulmifolia leaves. The effective moisture diffusivity was found to be in the range of 10-13 – 10-12 m2/s and the convective mass transfer coefficient was in the range of 10-9 – 10-10 m/s. The activation energy value was found to be 89.21 kJ/mol.


The study is aimed experimentally and compared with the theoretical results of drying kinetics of Nagpur orange fruit dried in a hot air electrical dryer. Orange fruit is highly perishable and needs to be consumed or processed immediately after harvest. Drying or dehydration is one of the most practical methods of preserving food products. Therefore, thin layer drying characteristics of falling rate of Nagpur orange are determined experimentally under different conditions of drying air temperatures, relative humidity and air velocities for different moisture contents. Thin layer models like Wang and Singh, Page and Henderson have been compared with Experimental results. The knowledge of drying kinetics helps for identification of exact drying time and air flow velocity for different moisture content. Here drying operation is carried out at a velocity of 1m/sec and 1.25 m/sec for different temperature of 55°C, 65°C and 75°C. This analysis reveals that drying temperature has a more significant effect on moisture removal while velocity has the least effect. Drying rate is found to increase with the increase in drying temperature and reduce with drying time. Experimental data is statistically correlated by plotting the drying characteristics curve. The analysis reveals that Wang and Singh's model is a better model to explain the drying behavior of Nagpur Orange fruit (R2=0.9888).


2019 ◽  
Vol 65 (No. 1) ◽  
pp. 1-6
Author(s):  
Anirban Dey ◽  
Somya Singhal ◽  
Prasad Rasane ◽  
Sawinder Kaur ◽  
Navneet Kaur ◽  
...  

Opuntia ficus-indica (Linnaeus) Miller more usually known as fodder palm or nopal belongs to family Cactaceae. In the present study, the drying behavior of the O. ficus-indica cladodes was observed. The study concentrates on comparatively studying two types of commercial drying methods viz., forced convective drying (tray drying) and vacuum drying to dry nopal cladodes at three different temperatures viz. 40, 50 and 60°C. The equilibrium moisture contents for forced convective drying was achieved at 540–720 min and for that of vacuum drying at 600–840 min. Three mathematical drying models for thin layer drying viz. Page, Lewis and Henderson-Pabis model were evaluated for both convective drying and vacuum drying. Statistical parameters such as the coefficient of determination (R<sup>2</sup>), root mean square error and reduced χ<sup>2</sup> were used to fit the models. Page model was found to be satisfactory for both forced convective and vacuum drying of the nopal cladodes at 40 and 50°C respectively. Among these, two drying methods, forced convective drying method was found to be more suitable than the vacuum drying method for nopal cladodes on the basis of drying time and statistical parameters.


2013 ◽  
Vol 371 ◽  
pp. 323-327
Author(s):  
Miloš Vasić ◽  
Zagorka Radojević

Drying results, determined on samples made of masonry clay from the locality "Banatski Karlovac", are presented in this study. Experimental investigations were carried out in a laboratory recirculation dryer in which drying parameters (humidity, temperature, and velocity) could be programmed, controlled and monitored during drying process. Several mathematical models were used for drying process modelling. New semi-theoretical thin layer drying model, for heavy clay products, was developed and presented in this study. It represents a modification of Page's and logarithm's thin layer drying models. Results presented in this study have shown that new thin layer drying model describes and correlates the best experimentally determined drying process.


2017 ◽  
Vol 7 (2) ◽  
pp. 14 ◽  
Author(s):  
Luqman Ebow Ibn Daud ◽  
Isaac Nyambe Simate

As a means of adding value to pineapple production and minimising post-harvest losses, sliced pineapples were dried using a Solar Conduction Dryer (SCD) and appropriate thin layer drying models to predict drying were developed whilst the performance of the SCD was also investigated. For the period of the experiment, ambient temperature and temperature in the dryer ranged from 24 to 37 °C and 25 to 46 ℃ respectively. The performance of the dryer was compared to open sun drying using pineapple slices of 3-5 mm in thickness where the slices were reduced from an average moisture content of 85.42 % (w.b.) to 12.23 % (w.b.) by the SCD and to 51.51 % (w.b.) by the open sun drying in 8 hours effective drying time. Pineapple slices of thicknesses 3 mm, 5 mm, 7 mm and 10 mm were simultaneously dried in the four drying chambers of the SCD and their drying curves simulated with twelve thin layer drying models. The Middilli model was found as the best fitted thin layer drying model for sliced pineapples. The optimum fraction of drying tray area that should be loaded with pineapples was also investigated by simultaneously loading 7 mm slices of pineapples at 50, 75, and 100 percent of drying tray area. Loading the slices at 50, 75 and 100 percent of drying tray area gave overall thermal efficiencies of 23, 32 and 44 percent, respectively, hence loading pineapple slices at 100 percent drying tray area was recommended as the best.


Sign in / Sign up

Export Citation Format

Share Document