Computation of Flow and Heat Transfer in Turbine Blade Cooling Passages by Reynolds Stress Turbulence Model (Keynote Paper)

Author(s):  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for non-rotating and rotating turbine blade cooling passages with or without the rib turbulators. A multi-block Reynolds-averaged Navier-Stokes method was employed in conjunction with a near-wall second-moment closure to provide detailed velocity, pressure, and temperature distributions as well as Reynolds stresses and turbulent heat fluxes in various cooling channel configurations. These numerical results were systematically evaluated to determine the effect of blade rotation, coolant-to-wall density ratio, rib shape, channel aspect ratio and channel orientation on the generation of flow turbulence and the enhancement of surface heat transfer in turbine blade cooling passages. The second-moment solutions show that the secondary flow induced by the angled ribs, centrifugal buoyancy, and Coriolis forces produced strong nonisotropic turbulent stresses and heat fluxes that significantly affected flow field and surface heat transfer coefficients.

Author(s):  
Mohammad Alizadeh ◽  
Ali Izadi ◽  
Alireza Fathi ◽  
Hiwa Khaledi

Modern turbine blades are cooled by air flowing through internal cooling passages. Three-Dimensional numerical simulation of these blade cooling passages is too time-consuming because of their complex geometries. These geometrical complexities exist as a result of using various kinds of cooling technologies such as rib turbulators (inline, staggered, or inclined ribs), pin fin, 90 and 180 degree turns (both sharp and gradual turns, with and without turbulators), finned passage, by-pass flow and tip cap impingement. One possible solution to simulate such sophisticated passages is to use the one-dimensional network method, which is presented in the current work. Turbine blade cooling channels are flow passages having multiple inlets and exits. The present in-house developed solver uses a network method for analyzing such a complicated flow pattern. In this method, cooling system is represented by a network of elements connected together at different nodes. Using assumed wall temperature, internal flow and heat transfer is calculated. The final goal of this computation is a set of boundary conditions for conjugate blade heat transfer simulation (coolant side boundary conditions). For validation, it is required to use experimental data that include temperature distribution of blade coolant-side walls. Since there is no experimental work with such data in the open literature, numerical computation is validated using available analytical and published numerical data. Calculated results agree well with analytical and numerical data. In order to exhibit the potential capabilities of the developed code, flow and heat transfer in a complicated internal cooling passage of a typical vane are investigated using the network method.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Gerard Scheepers ◽  
R. M. Morris

Film cooling is extensively used by modern gas turbine blade designers as a means of limiting the blade temperature when exposed to extreme combustor outlet temperatures. The following paper describes an experimental study of heat transfer near the entrance to a film cooling hole in a turbine blade cooling passage. Steady state heat transfer results were acquired by using a transient measurement technique in a 40 times actual rectangular channel, representative of an internal cooling channel of a turbine blade. Platinum thin film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film cooling hole. Measurements were taken at various suction ratios, extraction angles, and wall temperature ratios with a main duct Reynolds number of 25,000. A numerical technique based on the resolution of the unsteady conduction equation, using a Crank–Nicholson scheme, is used to obtain the surface heat flux from the measured surface temperature history. Computational fluid dynamics predictions were also made to provide better understanding of the near-hole flow. The results show extensive heat transfer enhancement as a function of extraction angle and suction ratio in the near-hole region and demonstrate good agreement with a corresponding study. Furthermore it was shown that the effect of a wall-to-coolant ratio is of a second order and can therefore be considered negligible compared with the primary variables such as the suction ratio and extraction angle.o


Author(s):  
Roger W. Moss ◽  
Roger W. Ainsworth ◽  
Tom Garside

Measurements of turbine blade surface heat transfer in a transient rotor facility are compared with predictions and equivalent cascade data. The rotating measurements involved both forwards and reverse rotation (wake free) experiments. The use of thin-film gauges in the Oxford Rotor Facility provides both time-mean heat transfer levels and the unsteady time history. The time-mean level is not significantly affected by turbulence in the wake; this contrasts with the cascade response to freestream turbulence and simulated wake passing. Heat transfer predictions show the extent to which such phenomena are successfully modelled by a time-steady code. The accurate prediction of transition is seen to be crucial if useful predictions are to be obtained.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

Gas turbine blade tips encounter large heat load as they are exposed to the high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip life time. This paper presents numerical predictions of turbulent fluid flow and heat transfer through two-pass channels with and without guide vanes placed in the turn regions using RANS turbulence modeling. The effects of adding guide vanes on the tip-wall heat transfer enhancement and the channel pressure loss were analyzed. The guide vanes have a height identical to that of the channel. The inlet Reynolds numbers are ranging from 100,000 to 600,000. The detailed three-dimensional fluid flow and heat transfer over the tip-walls are presented. The overall performances of several two-pass channels are also evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide vanes are 10∼60% higher than that of a channel without guide vanes, while the pressure loss might be reduced when the guide vanes are properly designed and located, otherwise the pressure loss is expected to be increased severely. It is suggested that the usage of proper guide vanes is a suitable way to augment the blade tip heat transfer and improve the flow structure, but is not the most effective way compared to the augmentation by surface modifications imposed on the tip-wall directly.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitches of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at the exit Mach numbers of 0.55, 0.78, and 1.03, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6×105, 8×105, and 11×105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared with the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.


Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitch of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.78 and 1.03 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6 × 105, 8 × 105, and 11 × 105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared to the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.


1972 ◽  
Vol 94 (1) ◽  
pp. 51-58 ◽  
Author(s):  
W. Tabakoff ◽  
W. Clevenger

An experimental investigation of heat transfer characteristics for various configurations of air jets impinging on the leading edge inner surface of the blade wall is presented. Three configurations were investigated, namely a slot jet, a round jet row and an array of round jets. The effect on the heat transfer coefficient of injecting solid particles into the air flow is considered. The study treats an important class of turbine blade cooling for which small cooling mass flow rates are of interest. The experimental facility and procedures are described in detail. A theoretical technique is introduced for predicting the heat transfer in the case of the slot jet configuration. The results are compared to experimental data.


Sign in / Sign up

Export Citation Format

Share Document