The Effects of Freestream Turbulence, Turbulence Length Scale and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade

Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitch of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.78 and 1.03 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6 × 105, 8 × 105, and 11 × 105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared to the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.

2010 ◽  
Vol 133 (1) ◽  
Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitches of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at the exit Mach numbers of 0.55, 0.78, and 1.03, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6×105, 8×105, and 11×105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared with the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.


Author(s):  
A. C. Nix ◽  
T. E. Diller ◽  
W. F. Ng

The influence of freestream turbulence representative of the flow downstream of a modern gas turbine combustor and first stage vane on turbine blade heat transfer has been measured and analytically modeled in a linear, transonic turbine cascade. High intensity, large length-scale freestream turbulence was generated using a passive turbulence-generating grid to simulate the turbulence generated in modern combustors after passing through the first stage vane row. The grid produced freestream turbulence with intensity of approximately 10–12% and an integral length scale of 2 cm (Λx/c = 0.15) near the entrance of the cascade passages. Mean heat transfer results with high turbulence showed an increase in heat transfer coefficient over the baseline low turbulence case of approximately 8% on the suction surface of the blade, with increases on the pressure surface of approximately 17%. Time-resolved surface heat transfer and passage velocity measurements demonstrate strong coherence in velocity and heat flux at a frequency correlating with the most energetic eddies in the turbulence flow field (the integral length-scale). An analytical model was developed to predict increases in surface heat transfer due to freestream turbulence based on local measurements of turbulent velocity fluctuations and length-scale. The model was shown to predict measured increases in heat flux on both blade surfaces in the current data. The model also successfully predicted the increases in heat transfer measured in other work in the literature, encompassing different geometries (flat plate, cylinder, turbine vane and turbine blade) and boundary layer conditions.


Author(s):  
Zhigang Li ◽  
Bo Bai ◽  
Luxuan Liu ◽  
Jun Li ◽  
Shuo Mao ◽  
...  

Abstract In gas turbine engines, the first-stage vanes usually suffer harsh incoming flow conditions from the combustor with high pressure, high temperature and high turbulence. The combustor-generated high freestream turbulence and strong secondary flows in a gas turbine vane passage have been reported to augment the endwall thermal load significantly. This paper presents a detailed numerical study on the effects of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the endwall secondary flow pattern and heat transfer distribution of a transonic linear turbine vane passage at realistic engine Mach numbers, with a flat endwall no cooling. Numerical simulations were conducted at a range of different operation conditions: six freestream turbulence intensities (Tu = 1%, 5%, 10%, 13%, 16% and 20%), six turbulence length scales (normalized by the vane pitch of Λ/P = 0.01, 0.04, 0.07, 0.12, 0.24, 0.36), and three exit isentropic Mach number (Maex = 0.6, 0.85 and 1.02 corresponding exit Reynolds number Reex = 1.1 × 106, 1.7 × 106 and 2.2 × 106, respectively, based on the vane chord). Detailed comparisons were presented for endwall heat transfer coefficient distribution, endwall secondary flow field at different operation conditions, while paying special attention to the link between endwall thermal load patterns and the secondary flow structures. Results show that the freestream turbulence intensity and length scale have a significant influence on the endwall secondary flow field, but the influence of the exit Reynolds number is very weak. The Nusselt number patterns for the higher turbulence intensities (Tu = 16%, 20%) appear to be less affected by the endwall secondary flows than the lower turbulence cases. The thermal load distribution in the arc region around the vane leading edge and the banded region along the vane pressure side are influenced most strongly by the freestream turbulence intensity. In general, the higher freestream turbulence intensities make the vane endwall thermal load more uniform. The Nusselt number distribution is only weakly affected by the turbulence length scale when Λ/P is larger than 0.04. The heat transfer level appears to have a significant uniform augmentation over the whole endwall region with the increasing Maex. The endwall thermal load distribution is classified into four typical regions, and the effects of freestream turbulence, exit Reynolds number in each region were discussed in detail.


2006 ◽  
Vol 129 (3) ◽  
pp. 542-550 ◽  
Author(s):  
A. C. Nix ◽  
T. E. Diller ◽  
W. F. Ng

The influence of freestream turbulence representative of the flow downstream of a modern gas turbine combustor and first stage vane on turbine blade heat transfer has been measured and analytically modeled in a linear, transonic turbine cascade. High-intensity, large length-scale freestream turbulence was generated using a passive turbulence-generating grid to simulate the turbulence generated in modern combustors after passing through the first stage vane row. The grid produced freestream turbulence with intensity of approximately 10–12% and an integral length scale of 2cm(Λx∕c=0.15) near the entrance of the cascade passages. Mean heat transfer results with high turbulence showed an increase in heat transfer coefficient over the baseline low turbulence case of approximately 8% on the suction surface of the blade, with increases on the pressure surface of approximately 17%. Time-resolved surface heat transfer and passage velocity measurements demonstrate strong coherence in velocity and heat flux at a frequency correlating with the most energetic eddies in the turbulence flow field (the integral length scale). An analytical model was developed to predict increases in surface heat transfer due to freestream turbulence based on local measurements of turbulent velocity fluctuations and length scale. The model was shown to predict measured increases in heat flux on both blade surfaces in the current data. The model also successfully predicted the increases in heat transfer measured in other work in the literature, encompassing different geometries (flat plate, cylinder, turbine vane, and turbine blade) and boundary layer conditions.


Author(s):  
Roger W. Moss ◽  
Roger W. Ainsworth ◽  
Tom Garside

Measurements of turbine blade surface heat transfer in a transient rotor facility are compared with predictions and equivalent cascade data. The rotating measurements involved both forwards and reverse rotation (wake free) experiments. The use of thin-film gauges in the Oxford Rotor Facility provides both time-mean heat transfer levels and the unsteady time history. The time-mean level is not significantly affected by turbulence in the wake; this contrasts with the cascade response to freestream turbulence and simulated wake passing. Heat transfer predictions show the extent to which such phenomena are successfully modelled by a time-steady code. The accurate prediction of transition is seen to be crucial if useful predictions are to be obtained.


1995 ◽  
Vol 117 (3) ◽  
pp. 401-406 ◽  
Author(s):  
K. Dullenkopf ◽  
R. E. Mayle

The effect of length scale in free-stream turbulence is considered for heat transfer in laminar boundary layers. A model is proposed that accounts for an “effective” intensity of turbulence based on a dominant frequency for a laminar boundary layer. Assuming a standard turbulence spectral distribution, a new turbulence parameter that accounts for both turbulence level and length scale is obtained and used to correlate heat transfer data for laminar stagnation flows. The result indicates that the heat transfer for these flows is linearly dependent on the “effective” free-stream turbulence intensity.


Author(s):  
Nojin Park ◽  
Changmin Son ◽  
Jangsik Yang ◽  
Changyong Lee ◽  
Kidon Lee

A series of experiments were conducted to investigate the detailed heat transfer characteristics of a large scaled model of a turbine blade internal cooling system. The cooling system has one passage in the leading edge and a triple passage for the remained region with two U-bends. A large scaled model (2 times) is designed to acquire high resolution measurement. The similarity of the test model was conducted with Reynolds number at the inlet of the internal cooling system. The model is designed to simulate the flow at engine condition including film extractions to match the changes in flowrates through the internal cooling system. Also, 45 deg ribs were installed for heat transfer enhancement. The experiments were performed varying Reynolds number in the range of 20,000 to 100,000 with and without ribs under stationary condition. This study employs transient heat transfer technique using thermochromic liquid crystal (TLC) to obtain full surface heat transfer distributions. The results show the detailed heat transfer distributions and pressure loss. The characteristics of pressure loss is largely dependent on the changes in cross-sectional area along the passages, the presence of U-bends and the extraction of coolant flow through film holes. The local and area averaged Nusselt number were compared to available correlations. Finally, the thermal performance counting the heat transfer enhancement as well as pressure penalty is presented.


2000 ◽  
Vol 123 (1) ◽  
pp. 11-15 ◽  
Author(s):  
A. N. Secundov ◽  
M. Kh. Strelets ◽  
A. K. Travin

The one-equation, eddy-viscosity transport model of Gulyaev, Kozlov, and Secundov, νt-92, is modified and supplemented by an equation for the turbulence length scale. The advantages of the model developed here are demonstrated by computing a shear-free “boundary layer” on a flat plate, and the flow and heat transfer near the forward stagnation line of a circular cylinder. Both cases are known to be challenging for conventional turbulence models.


Author(s):  
Markus Schwa¨nen ◽  
Michael Meador ◽  
Josh Camp ◽  
Shriram Jagannathan ◽  
Andrew Duggleby

Higher turbine inlet temperatures enable increased gas turbine efficiency but significantly reduce component lifetimes through melting of the blade and endwall surfaces. This melting is exacerbated by the horseshoe vortex that forms as the boundary layer stagnates in front of the blade, driving hot gasses to the surface. Furthermore, this vortex exhibits significant dynamical motions that increase the surface heat transfer above that of a stationary vortex. To further understand this heat transfer augmentation, the dynamics of the horseshoe vortex must be characterized in a 3D time-resolved fashion which is difficult to obtain experimentally. In this paper, a 1st stage high pressure stator passage is examined using a spectral element direct numerical simulation at a Reynolds number Re = U∞C/v = 10,000. Although the Re is lower than engine conditions, the vortex already exhibits similar strong aperiodic motions and any uncertainty due to sub-grid scale modeling is avoided. The vortex dynamics are analyzed and their impact on the surface heat transfer is characterized. Results from a baseline case with a smooth endwall are also compared to a passage with film cooling holes. Higher Reynolds number simulations require a Large Eddy Simulation turbulent viscosity model that can handle the high accelerations around the blade. A high-pass-filter sub-grid scale model is tested at the same low Reynolds number to test its effectiveness by direct comparisons to the DNS. This resulted in a significant drop in turbulence intensity due to the high strain rate in the freestream, resulting in different dynamics of the vortex than observed in the DNS. Appropriate upstream engine conditions of high freestream turbulence and large integral length scales for all cases are generated via a novel inflow turbulence development domain using a periodic solution of Taylor vortices that are convected over a square grid. The size of the vortices and grid spacing is used to control the integral length scale, and the intensity of the vortices and upstream distance is used to control the turbulence intensity. The baseline DNS exhibits a bi-modal horseshoe vortex, and the presence of cooling-holes qualitatively increases the number of vortex cores resulting in more complex interactions.


Sign in / Sign up

Export Citation Format

Share Document