Comparison of Different Methods for the Evaluation of Cavitation Damaged Surfaces

Author(s):  
B. Bachert ◽  
G. Ludwig ◽  
B. Stoffel ◽  
S. Baumgarten

The experimental data which will be presented in this paper are the results of the comparison between different methods for evaluating damaged surfaces by cavitation erosion. The different methods are partly working in the initial stage of cavitation erosion and partly at developed cavitation erosion, where mass loss occurs. The used test rig consists basically of a rotating disc with a diameter of 500 mm on which four holes are located. Each hole generates a cavitation zone while the disc is rotating. The test objects are material specimens made of copper. Copper was used as test material in respect to reasonable durations for the tests. The specimen can be implemented in the casing of the test rig directly across the rotating disc on the diameter where the holes are located. This rotating disc test rig generates a very aggressive type of cavitation, so that mass loss, of course depending on the tested material, will appear after relatively short durations. Also the initial stage of cavitation erosion can be observed. The used test rig is very interesting regarding the possibility to apply different measuring techniques to characterize the erosive aggressiveness of cavitation. These techniques are at first the so-called Pitcount-Method, which allows investigations of cavitation erosion in the initial stage. The second one is an acoustic method, which is based on a structure-borne noise sensor and a specially developed signal processing system. The third method is the measuring of mass loss of the material specimen after several time steps. With the help of a CCD-camera and special digital image processing software, images of different cavitation conditions were recorded. The information obtained from these images should serve as support for the evaluation of the other used methods. After the evaluation with the above mentioned methods, the specimens were evaluated with a special device which works with the help of a white light interferometer. With this evaluation method three-dimensional information can be obtained in respect to the actually eroded volume of the specimens. With this information the lost mass of the specimens could be calculated directly. Especially the comparison of the results obtained from the Pitcount-Method, which is a two-dimensional evaluation method, and the three-dimensional results of the white light interferometer is an important point of the work within this paper.

Volume 3 ◽  
2004 ◽  
Author(s):  
B. Bachert ◽  
M. Dular ◽  
S. Baumgarten ◽  
G. Ludwig ◽  
B. Stoffel

The experimental results, which will be presented in this paper, demonstrate the significant influence of the flow velocity, respectively the rotational speed, on the erosive aggressiveness of cavitating flows. On two of the three investigated test objects, cavitation erosion can only be observed in the initial stage by the so-called pit-count evaluation method. Developed erosion with mass loss is impossible to measure because of the very long duration until mass loss appears. The third test rig generates a very aggressive type of cavitation, so that mass loss, depending on the tested material, will appear after relatively short durations. In addition, the initial stage of cavitation erosion can be observed. Three different techniques were applied to investigate cavitation erosion in the initial and developed stage. Thereby, the capability of methods to quantify erosive effects in dependence of influencing operating parameters has been proven.


2006 ◽  
Vol 113 ◽  
pp. 513-516 ◽  
Author(s):  
Marek Szkodo

The laser surface alloying of 18/8 stainless steel with Mn, was carried out by 6 kW cw CO2 laser. The microstructure, chemical composition and phase identification of the modified layer were examined using scanning electron microscopy, energy dispersive X-ray spectroscopy and Xray diffractometry, respectively. Cavitation behavior of produced layers was investigated in a rotating disc facility. Cavitation properties of laser-processed steel were calculated in the initial stage of erosion, on the surface of about 4 mm2, on which cavitation intensity was constant. As a property characterizing the cavitation erosion resistance of materials was proposed for the depth of strain hardening. It was found that presence of manganese in the amount of 7.31% causes the highest increase hardness after alloying and the lowest depth of strain hardening due to cavitation loading.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


Sign in / Sign up

Export Citation Format

Share Document