Cavitation Erosion Behavior of 18/8 Stainless Steel after Its Laser Alloying of Manganese

2006 ◽  
Vol 113 ◽  
pp. 513-516 ◽  
Author(s):  
Marek Szkodo

The laser surface alloying of 18/8 stainless steel with Mn, was carried out by 6 kW cw CO2 laser. The microstructure, chemical composition and phase identification of the modified layer were examined using scanning electron microscopy, energy dispersive X-ray spectroscopy and Xray diffractometry, respectively. Cavitation behavior of produced layers was investigated in a rotating disc facility. Cavitation properties of laser-processed steel were calculated in the initial stage of erosion, on the surface of about 4 mm2, on which cavitation intensity was constant. As a property characterizing the cavitation erosion resistance of materials was proposed for the depth of strain hardening. It was found that presence of manganese in the amount of 7.31% causes the highest increase hardness after alloying and the lowest depth of strain hardening due to cavitation loading.

2011 ◽  
Vol 183 ◽  
pp. 201-206
Author(s):  
Marek Szkodo ◽  
Artur Sitko ◽  
Maria Gazda

This paper presents investigation of cavitation erosion resistance of nitrided austenitic stainless steel X5CrNi18-10. The diffusion layers were produced by using different parameters of reactive atmosphere (N2:H2). The microstructure, chemical composition and phase identification of the modified layer were examined using scanning electron microscopy, glow-discharge optical emission spectrometer and X-ray diffractometry, respectively. Cavitation erosion resistance of produced surface layers was investigated in a rotating disc facility. As a property characterizing the cavitation erosion resistance of manufactured surface layers were proposed incubation period and mass loss after 330 min of cavitation test. It was found that cavitation erosion resistance of modified surface layers is lower than reference material (not treated X5CrNi18-10 stainless steel).


Author(s):  
B. Bachert ◽  
G. Ludwig ◽  
B. Stoffel ◽  
S. Baumgarten

The experimental data which will be presented in this paper are the results of the comparison between different methods for evaluating damaged surfaces by cavitation erosion. The different methods are partly working in the initial stage of cavitation erosion and partly at developed cavitation erosion, where mass loss occurs. The used test rig consists basically of a rotating disc with a diameter of 500 mm on which four holes are located. Each hole generates a cavitation zone while the disc is rotating. The test objects are material specimens made of copper. Copper was used as test material in respect to reasonable durations for the tests. The specimen can be implemented in the casing of the test rig directly across the rotating disc on the diameter where the holes are located. This rotating disc test rig generates a very aggressive type of cavitation, so that mass loss, of course depending on the tested material, will appear after relatively short durations. Also the initial stage of cavitation erosion can be observed. The used test rig is very interesting regarding the possibility to apply different measuring techniques to characterize the erosive aggressiveness of cavitation. These techniques are at first the so-called Pitcount-Method, which allows investigations of cavitation erosion in the initial stage. The second one is an acoustic method, which is based on a structure-borne noise sensor and a specially developed signal processing system. The third method is the measuring of mass loss of the material specimen after several time steps. With the help of a CCD-camera and special digital image processing software, images of different cavitation conditions were recorded. The information obtained from these images should serve as support for the evaluation of the other used methods. After the evaluation with the above mentioned methods, the specimens were evaluated with a special device which works with the help of a white light interferometer. With this evaluation method three-dimensional information can be obtained in respect to the actually eroded volume of the specimens. With this information the lost mass of the specimens could be calculated directly. Especially the comparison of the results obtained from the Pitcount-Method, which is a two-dimensional evaluation method, and the three-dimensional results of the white light interferometer is an important point of the work within this paper.


2017 ◽  
Vol 69 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Kewen Peng ◽  
Can Kang ◽  
Gensheng Li ◽  
Kyuhei Matsuda ◽  
Hitoshi Soyama

2003 ◽  
Vol 782 ◽  
Author(s):  
Giuseppe Bregliozzi ◽  
Syed Imad-Uddin Ahmed ◽  
Andrea Di Schino ◽  
Josè M. Kenny ◽  
Henry Haefke

ABSTRACTResearch conducted on steels is motivated by a technological need to further improve their properties. Among the different steel types, austenitic stainless steels possess good corrosion resistance and formability. However, they also have a low yield strength. One way of increasing the yield strength is by grain refining. This work presents a study on the cavitation erosion and friction behavior of AISI 304 austenitic stainless steel characterized by two different grain sizes: 2.5 μm and 40 μm. The cavitation erosion behavior in water with different pH values and at room temperature has been studied by using a 20 kHz ultrasonic vibratory apparatus. The grain size of the steels has an important effect on the nature of damage produced on the surface of the samples. The resistance to cavitation erosion increases with decreasing grain size. It was also found that cavitation erosion resistance of the two steels is sensitive to variations in the pH value; decrease of this value produces an increase in surface damage. Using a precision microtribometer, with applied loads in the μN regime, it was found that capillarity plays a dominant role. At the same loads, in high humidity environments, both the fine and coarse grain steels exhibit high friction relative to measurements performed under dry conditions. At high loads (20 mN and above) a reversal in microfrictional behavior occurs in that friction is higher under dry conditions than under moist conditions.


Sign in / Sign up

Export Citation Format

Share Document