Effects of Geometrical Structure on Flows Around a Rotating Disk in an Enclosure

Author(s):  
T. Watanabe ◽  
H. Furukawa ◽  
M. Suzuki

Flows around a rotating disk in a cylindrical enclosure are typical models of flows found in fluid machinery and chemical reactors. They have their practical applications and draw engineering interests. When the radius of the disk is infinite, it is known that circular rolls, spiral rolls, turbulent spirals and turbulent spots appear. In this case, the parameters governing the flows are the Reynolds number based on the angular velocity of the disk and the axial gap between the disk surface and the end wall of the enclosure. We consider, in this paper, a more practical configuration. The disk has its thickness comparable with the axial height of the enclosure, and the radial gap between the disk rim and the side wall of the enclosure is not negligible. Vortex flows are driven by the centrifugal force around the disk rim, and they are expected to have effects on the entire flow. We performed numerical and experimental studies and investigated the unsteady three-dimensional behaviors. A new criterion to identify flow patterns is introduced and the Hopf bifurcation points from the axisymmetric flows to the three-dimensional flows are determined. The phase velocity of the spiral rolls are measured by a time-dependent analysis. The influence of the geometrical structure on the phase velocity is estimated. New types of flows are found, where bead-like vortices appear and spiral rolls with positive and negative front angles coexist.

2002 ◽  
Vol 124 (3) ◽  
pp. 719-727 ◽  
Author(s):  
Mohammad Al-Shannag ◽  
Joan Herrero ◽  
Joseph A. C. Humphrey ◽  
Francesc Giralt

Numerical results are obtained for the isothermal laminar flow of air between a pair of disks attached to and rotating with a hub in a fixed cylindrical enclosure. The presence of radial clearances or “gaps” between the rims of the disks and the curved enclosure wall, and the finite thickness of the disks, are considered in the calculations. The gaps allow time- and circumferentially-dependent axially-directed air flow exchanges between the contiguous inter-disk spaces. As a consequence, axisymmetric calculations of the flow, whether using boundary conditions in the gaps or extended to include the entire flow domain, fail to faithfully reproduce the experimentally measured radial variations of the mean and rms circumferential velocity components in the inter-disk space. Likewise, three-dimensional calculations using the symmetry-plane boundary condition in the gaps also fail to reproduce these variations. In contrast, computationally intensive three-dimensional calculations of the entire flow domain, including the gaps, yield results in very good agreement with the measured mean and rms velocities. These three-dimensional calculations reveal large velocity fluctuations in the gap regions accompanied by corresponding large fluctuations of the inter-disk flow, reflecting a destabilization of the structure and dynamics of the latter by the former. The axisymmetric calculations as well as those using the symmetry-plane condition in the gap are included in this study principally to elucidate their shortcomings in simulating the three-dimensional flows considered; they are not the main goal of the study. Notwithstanding, the physically approximate, full domain axisymmetric calculations yield useful qualitative results. They show that increasing gap size decreases disk surface shear and the associated disk torque coefficient, but at the cost of destabilizing the inter-disk flow. This observation is in agreement with earlier findings and is better understood as the result of the present study.


2012 ◽  
Vol 85 (3) ◽  
pp. 450-481 ◽  
Author(s):  
Jun Liu ◽  
Liqun Zhang ◽  
Dapeng Cao ◽  
Jianxiang Shen ◽  
Yangyang Gao

ABSTRACT In the field of elastomer nanocomposites (ENCs), computational simulation technique is becoming more and more essential, as a result of its ability to provide important and clear information at the molecular level, which is always difficult to obtain or not accessible through experimental investigations. We focus on summarizing the progress achieved in the simulation research of three critical topics of ENCs, namely, (i) the dispersion mechanism (particularly polymer-mediated interparticle interaction, the “many-body” effect at high filler loading), (ii) the characterization of the nanoscale/microscale structure and dynamics [the modified chain configuration in the presence of nanoparticles (NPs), the interfacial binding strength determining the efficiency of the stress transfer, the possibly altered interfacial chain structure, interfacial segmental dynamics leading to the shift of the glass transition temperature Tg, the formation of the filler network and its structure, the chemical cross-linking process], and (iii) the macroscopic viscoelasticity (the Payne effect), mechanical reinforcement, and physical property (thermal conductivity). Since recently only limited simulation work has been carried out pertaining to ENCs, we discuss these three topics in light of the simulation and theoretical achievements of polymer nanocomposites (mainly polymer melts filled with NPs). Meanwhile, some relevant experimental studies are also included for better illustration. Furthermore, for each topic, three typically different reinforcing fillers, such as three-dimensional spherical, two-dimensional sheet, and one-dimensional rod NPs, separately corresponding to carbon black or silica, clay sheets, and carbon nanotubes intensively used in the practical applications of ENCs, are illustrated in order. In order to realize a comprehensive understanding of the structure–property relation and in the meantime to provide more practical guidelines for the engineering applications of ENCs, we investigate future simulation opportunities and difficulties.


Author(s):  
GeonHwan Cho ◽  
Carl M. Sangan ◽  
J. Michael Owen ◽  
Gary D. Lock

The ingress of hot gas through the rim seal of a gas turbine depends on the pressure difference between the mainstream flow in the turbine annulus and that in the wheel-space radially inward of the seal. This paper describes experimental measurements which quantify the effect of ingress on both the stator and rotor disks in a wheel-space pressurized by sealing flow. Infrared (IR) sensors were developed and calibrated to accurately measure the temperature history of the rotating disk surface during a transient experiment, leading to an adiabatic effectiveness. The performance of four generic (though engine-representative) single- and double-clearance seals was assessed in terms of the variation of adiabatic effectiveness with sealing flow rate. The measurements identify a so-called thermal buffering effect, where the boundary layer on the rotor protects the disk from the effects of ingress. It was shown that the effectiveness on the rotor was significantly higher than the equivalent stator effectiveness for all rim seals tested. Although the ingress through the rim seal is a consequence of an unsteady, three-dimensional flow field, and the cause–effect relationship between pressure and the sealing effectiveness is complex, the time-averaged experimental data are shown to be successfully predicted by relatively simple semi-empirical models, which are described in a separate paper. Of particular interest to the designer, significant ingress can enter the wheel-space before its effect is sensed by the rotor.


1998 ◽  
Vol 355 ◽  
pp. 285-315 ◽  
Author(s):  
T. C. CORKE ◽  
K. F. KNASIAK

This work involves the study of the development of Type 1 stationary and travelling cross-flow modes in the three-dimensional boundary layer over a rotating disk. In order to control the characteristics of the stationary modes, we utilized organized patterns of roughness which were applied to the disk surface. These consisted of ink dots which were equally spaced in the azimuthal direction at a fixed radius in order to enhance particular azimuthal wavenumbers. Logarithmic spiral patterns of dots were also used to enhance azimuthal wave angles. Velocity fluctuation time series were decomposed into the components corresponding to the stationary and travelling modes using the instantaneous disk position as a reference. Their development was documented through the linear and nonlinear stages leading to turbulence. The linear stage agreed well with linear stability predictions for both modes. In the nonlinear stage we documented a triad coupling between pairs of travelling modes and a stationary mode. The strongest of these was a difference interaction which led to the growth of a low-azimuthal-number, stationary mode. This mode had the largest amplitude and appeared to dominate transition. In retrospect, we can observe the signs of this mechanism in past flow visualization (Kobayashi, Kohama & Takamadate 1980), and it can account for the ‘jagged’ front normally associated with cross-flow-dominated transition on swept wings.


Shock Waves ◽  
2021 ◽  
Author(s):  
L. Laguarda ◽  
J. Santiago Patterson ◽  
F. F. J. Schrijer ◽  
B. W. van Oudheusden ◽  
S. Hickel

AbstractExperiments on shock–shock interactions were conducted in a transonic–supersonic wind tunnel with variable free-stream Mach number functionality. Transition between the regular interaction (RI) and the Mach interaction (MI) was induced by variation of the free-steam Mach number for a fixed interaction geometry, as opposed to most previous studies where the shock generator angles are varied at constant Mach number. In this paper, we present a systematic flow-based post-processing methodology of schlieren data that enables an accurate tracking of the evolving shock system including the precise and reproducible detection of RI$$\rightleftarrows $$ ⇄ MI transition. In line with previous experimental studies dealing with noisy free-stream environments, transition hysteresis was not observed. However, we show that establishing accurate values of the flow deflections besides the Mach number is crucial to achieve experimental agreement with the von Neumann criterion, since measured flow deflections deviated significantly, up to $$1.2^{\circ }$$ 1 . 2 ∘ , from nominal wedge angles. We also report a study conducted with a focusing schlieren system with variable focal plane that supported the image processing by providing insights into the three-dimensional side-wall effects integrated in the schlieren images.


1994 ◽  
Vol 116 (1) ◽  
pp. 116-123 ◽  
Author(s):  
G. Freskos ◽  
O. Penanhoat

The demand for efficiency in today’s and in future civil aircraft is such that experimental studies alone do not suffice to optimize aircraft aerodynamics. In this context, much effort has been spent in the past decade to develop numerical methods capable of reproducing the phenomena that occur in the engine flow field. This paper presents some studies in Computational Fluid Dynamics related to supersonic inlets. Two approaches are considered. First, there is a need for a code capable of calculating in a cost-efficient way the entire flow field around a two-dimensional or three-dimensional inlet, e.g., to perform parametric studies. To this effect, a computing method based on grid construction by mesh generator dedicated to inlet shapes and on the discretization of the unsteady Euler equations with an explicit upwind scheme was developed. The treatment of complex geometries led us to adopt a multiblock grid approach. Therefore particular attention was paid to the treatment of the boundary conditions between the different domains. Second, there is a need for a code that can capture local phenomena in order to get a better understanding of inlet behavior (shock/shock, shock/boundary layer interactions, etc.). To this effect a two-dimensional turbulent Navier-Stokes code is used. The two-equation k-ε turbulence model included in the program seems to be one of the most successful models for calculating flow realistically. Correction of the near-wall influence extends its capability to complex flow configurations, e.g., those with separated zones.


Author(s):  
Nuri Alpay Ku¨rekci

Natural convection of air in a cubical volume is investigated experimentally and numerically. A cubical volume of 20×20×20 cm dimensions was built for the experimental study. One of the vertical walls covering the volume is hot, the other one is cold and the rest are adiabatic. Three walls are made of aluminum and the others are made of heat-resistant glass. The hot wall temperature is kept constant during the experiments by means of an electrical heater. The cold wall is at the ambient temperature. Other adiabatic surfaces are insulated with polyurethane foam. Experiments are performed in an air-conditioned room at 21°C. PIV (Particle Image Velocimetry) is used for velocity measurements. The FLUENT CFD software package is used for the numerical study. A three-dimensional solution is obtained for the laminar flow case for a 61×61×61 grid. The numerical and experimental results are compared with each other for the validation of the numerical solution under the testing conditions of TH = 69°C, TC = 41°C and Ra = 1.3×107. Results obtained from the numerical and experimental studies are in a reasonably good agreement with each other.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


Sign in / Sign up

Export Citation Format

Share Document