Unlocking the Physics of Hypervelocity Impact

Author(s):  
Andrew Thurber ◽  
Javid Bayandor

Satellites and spacecraft in orbit can impact micrometeorites and other debris at velocities exceeding thousands of meters per second. The shock pressures and temperatures created by these hypervelocity impacts greatly surpass standard material strengths, and deform structures in unconventional failure modes. Under these extreme conditions and strain rates, plastic deformation of a solid can resemble viscous fluidic motion. Using meshless finite element analysis methods, the present research attempts to quantify this fluidic structural response and identify analogous interactions in fluid dynamics.

1980 ◽  
Vol 102 (1) ◽  
pp. 126-127 ◽  
Author(s):  
T. J. Chung ◽  
G. A. Keramidas

2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Zixiang Sun ◽  
John W. Chew ◽  
Nicholas J. Hills ◽  
Konstantin N. Volkov ◽  
Christopher J. Barnes

An efficient finite element analysis/computational fluid dynamics (FEA/CFD) thermal coupling technique has been developed and demonstrated. The thermal coupling is achieved by an iterative procedure between FEA and CFD calculations. Communication between FEA and CFD calculations ensures continuity of temperature and heat flux. In the procedure, the FEA simulation is treated as unsteady for a given transient cycle. To speed up the thermal coupling, steady CFD calculations are employed, considering that fluid flow time scales are much shorter than those for the solid heat conduction and therefore the influence of unsteadiness in fluid regions is negligible. To facilitate the thermal coupling, the procedure is designed to allow a set of CFD models to be defined at key time points/intervals in the transient cycle and to be invoked during the coupling process at specified time points. To further enhance computational efficiency, a “frozen flow” or “energy equation only” coupling option was also developed, where only the energy equation is solved, while the flow is frozen in CFD simulation during the thermal coupling process for specified time intervals. This option has proven very useful in practice, as the flow is found to be unaffected by the thermal boundary conditions over certain time intervals. The FEA solver employed is an in-house code, and the coupling has been implemented for two different CFD solvers: a commercial code and an in-house code. Test cases include an industrial low pressure (LP) turbine and a high pressure (HP) compressor, with CFD modeling of the LP turbine disk cavity and the HP compressor drive cone cavity flows, respectively. Good agreement of wall temperatures with the industrial rig test data was observed. It is shown that the coupled solutions can be obtained in sufficiently short turn-around times (typically within a week) for use in design.


Author(s):  
NN Subhash ◽  
Adathala Rajeev ◽  
Sreedharan Sujesh ◽  
CV Muraleedharan

Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis–based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis–based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


Author(s):  
Carlos A. Pereira ◽  
Paulo P. Silva ◽  
Anto´nio F. Mateus ◽  
Joel A. Witz

This paper presents the results of investigations into the mechanics and failure modes of structural details usually encountered in lightweight marine structures. The structural analyses are performed using non-linear finite element analysis. The stress concentration factors and expected fatigue lives of the as designed and the as built structural details are evaluated and alternative configurations are discussed with the aim of improving the designs for production.


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


Sign in / Sign up

Export Citation Format

Share Document