Preliminary Fluid Dynamic Analysis of Turbulent Flat and Ribbed Square Duct via CFD Approach

Author(s):  
Riccardo Mereu ◽  
Paolo Lampitella ◽  
Fabio Inzoli

A preliminary numerical study of the fluid dynamic behavior of flat and ribbed square duct is presented. Fluid dynamics of two configurations is analyzed via Reynolds Averaged Navier Stokes (RANS) modeling in order to underline the main characteristics of each configuration and to give some information at global and local level. This kind of modeling is used as base for setting up a more detailed analysis such as Direct Numerical Simulation (DNS). Flat and ribbed square duct with a Reynolds number based on bulk velocity and hydraulic diameter of 10320 (Reτ=600 for the flat configuration) are analyzed and the results of the flat configuration are compared with available results obtained via DNS approach. The ribbed square duct is characterized by a two-pass configuration (aligned ribs in the top and bottom walls), with the duct height about six times the height of the obstacles for a blockage ratio of about 30%. Finally a pitch ratio (rib spacing to rib height) of 10 is used in order to obtain a k-type roughness permitting the flow to reattach before the next obstacle. Advanced U-RANS and RANS models such as Reynolds Stress Models (RSM), Explicit Algebraic Stress Models (EASM), v2f, and two-equation low Reynolds models have been used and compared. In this direction the validated results obtained for the smooth square duct are used to select the most appropriate RANS models and to evaluate their performance for a ribbed square duct at the same Reynolds number. A periodic configuration including one rib and considering the flow fully developed is used to reduce computational costs. The results of the ribbed square duct are hence analyzed in order to evaluate characteristics such as domain and mesh size.

Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
H. D. Akolekar ◽  
J. Weatheritt ◽  
N. Hutchins ◽  
R. D. Sandberg ◽  
G. Laskowski ◽  
...  

Nonlinear turbulence closures were developed that improve the prediction accuracy of wake mixing in low-pressure turbine (LPT) flows. First, Reynolds-averaged Navier–Stokes (RANS) calculations using five linear turbulence closures were performed for the T106A LPT profile at isentropic exit Reynolds numbers 60,000 and 100,000. None of these RANS models were able to accurately reproduce wake loss profiles, a crucial parameter in LPT design, from direct numerical simulation (DNS) reference data. However, the recently proposed kv2¯ω transition model was found to produce the best agreement with DNS data in terms of blade loading and boundary layer behavior and thus was selected as baseline model for turbulence closure development. Analysis of the DNS data revealed that the linear stress–strain coupling constitutes one of the main model form errors. Hence, a gene-expression programming (GEP) based machine-learning technique was applied to the high-fidelity DNS data to train nonlinear explicit algebraic Reynolds stress models (EARSM), using different training regions. The trained models were first assessed in an a priori sense (without running any RANS calculations) and showed much improved alignment of the trained models in the region of training. Additional RANS calculations were then performed using the trained models. Importantly, to assess their robustness, the trained models were tested both on the cases they were trained for and on testing, i.e., previously not seen, cases with different flow features. The developed models improved prediction of the Reynolds stress, turbulent kinetic energy (TKE) production, wake-loss profiles, and wake maturity, across all cases.


Author(s):  
David Gross ◽  
Yann Roux ◽  
Benjamin Rousse ◽  
François Pétrié ◽  
Ludovic Assier ◽  
...  

The problem of Vortex-Induced Vibrations (VIV) on spool and jumper geometries is known to present several drawbacks when approached with conventional engineering tools used in the study of VIV on risers. Current recommended practices can lead to over-conservatism that the industry needs to quantify and minimize within notably cost reduction objectives. Within this purpose, the paper will present a brief critical review of the Industry standards and more particularly focus on both experimental and Computational Fluid Dynamic (CFD) approaches. Both qualitative and quantitative comparisons between basin tests and CFD results for a 2D ‘M-shape’ spool model will be detailed. The results presented here are part of a larger experimental and numerical campaign which considered a number of current velocities, heading and geometry configurations. The vibratory response of the model will be investigated for one of the current velocities and compared with the results obtained through recommended practices (e.g. Shear7 and DNV guidelines). The strategy used by the software K-FSI to solve the fluid-structure interaction (FSI) problem is a partitioned coupling solver between fluid solver (FINE™/Marine) and structural solvers (ARA). FINE™/Marine solves the Reynolds-Averaged Navier-Stokes Equations in a conservative way via the finite volume method and can work on structured or unstructured meshes with arbitrary polyhedrons, while ARA is a nonlinear finite element solver with a large displacement formulation. The experiments were conducted in the BGO FIRST facility located in La Seyne sur Mer, France. Particular attention was paid towards the model design, fabrication, instrumentation and characterization, to ensure an excellent agreement between the structural numerical model and the actual physical model. This included the use of a material with low structural damping, the performance of stiffness and decay tests in air and in still water, plus the rationalization of the instrumentation to be able to capture the response with the minimum flow perturbation or interaction due to instrumentation.


Author(s):  
Saravana Kumar Lakshmanan ◽  
Alok Mishra ◽  
Ashoke De

Accurate laminar-turbulent prediction is very much important to understand the complete performance characteristics of any airfoil which operates at low and medium Reynolds number. In this article, a numerical study has been performed over two different thick airfoils operating at low Reynolds number using k-ω SST, k-kl-ω and Spalart-Allmaras (SA) RANS models. The unsteady two dimensional (2D) simulations are performed over NACA 0021 and NACA 65-021 at Re 120,000 for a range of angle of attacks. The performances of these models are assessed through aerodynamic lift, drag and pressure coefficients. To obtain better comparison, the simulated results are compared with the experimental measurements and XFOIL results as well. In this present study, it is found that the k-kl-ω transition model is capable of predicting correct lift, drag coefficient and separation bubble as reported in experiments. At high angles of attack, this model fails to predict performance variables accurately. The SA and SST models are fail to predict laminar separation bubble. However, At high angle of attack, SA model shows better predictions compared to k-kl-ω and k-ω SST models.


Author(s):  
Jiasen Hu ◽  
Torsten H. Fransson

A numerical study has been performed to compare the overall performance of three transition models when used with an industrial Navier-Stokes solver. The three models investigated include two experimental correlations and an integrated eN method. Twelve test cases in realistic turbomachinery flow conditions have been calculated. The study reveals that all the three models can work numerically well with an industrial Navier-Stokes code, but the prediction accuracy of the models depends on flow conditions. In general, all the three models perform comparably well to predict the transition in weak or moderate adverse pressure-gradient regions. The two correlations have the merit if the transition starts in strong favorable pressure-gradient region under high Reynolds number condition. But only the eN method works well to predict the transition controlled by strong adverse pressure gradients. The three models also demonstrate different capabilities to model the effects of turbulence intensity and Reynolds number.


Author(s):  
M. R. Amiralaei ◽  
H. Alighanbari ◽  
S. M. Hashemi

The objective of the present study is to investigate the low Reynolds number (LRN) fluid dynamics of an elliptic airfoil performing a novel figure-eight-like motion. To this mean, the influence of phase angle between the pitching and translational (heaving and lagging) motions and the amplitude of translational motions on the fluid flow is simulated. Navier-Stokes (NS) equations with Finite Volume Method (FVM) are used and the instantaneous force coefficients and the fluid dynamics performance, as well as the corresponding vortical structures are analyzed. Both the phase angle and the amplitudes of horizontal and vertical motions are of great importance to the fluid dynamic characteristics of the model as they are shown to change the peaks of the fluid forces, fluid dynamic performance, and the vortical patterns around the model.


2012 ◽  
Vol 232 ◽  
pp. 246-251 ◽  
Author(s):  
P. Sathyan ◽  
S. Srikanth ◽  
I. Dheepan ◽  
M. Arun ◽  
C. Aswin ◽  
...  

The geometrical optimization of dump diffusers are extremely demanding as the flow fields and stress fields are very complex and must be well understood to achieve the required design efficiencies. In this paper parametric analytical studies have been carried out for examining the aerodynamics characteristics of different dump diffusers for modern aircraft engines. Numerical studies have been carried out using SST K- ω turbulence model. This code solves SST k- ω turbulence equations using the coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. We concluded that in addition to the dump gap ratio, the aerodynamic shape of the flame tube case and the other geometric variables are also need to be optimized judiciously after considering the fluid dynamic constraints for controlling the pressure recovery and the losses.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ryley McConkey ◽  
Eugene Yee ◽  
Fue-Sang Lien

AbstractThe recent surge in machine learning augmented turbulence modelling is a promising approach for addressing the limitations of Reynolds-averaged Navier-Stokes (RANS) models. This work presents the development of the first open-source dataset, curated and structured for immediate use in machine learning augmented corrective turbulence closure modelling. The dataset features a variety of RANS simulations with matching direct numerical simulation (DNS) and large-eddy simulation (LES) data. Four turbulence models are selected to form the initial dataset: k-ε, k-ε-ϕt-f, k-ω, and k-ω SST. The dataset consists of 29 cases per turbulence model, for several parametrically sweeping reference DNS/LES cases: periodic hills, square duct, parametric bumps, converging-diverging channel, and a curved backward-facing step. At each of the 895,640 points, various RANS features with DNS/LES labels are available. The feature set includes quantities used in current state-of-the-art models, and additional fields which enable the generation of new feature sets. The dataset reduces effort required to train, test, and benchmark new corrective RANS models. The dataset is available at 10.34740/kaggle/dsv/2637500.


Author(s):  
Adnan Anwar ◽  
Mudassar Razzaq ◽  
Liudmila Rivkind

As an example of an aerodynamics prototypical study, we examined a two-dimensional low Reynolds number flow over obstacles immersed in a stream of infinite extent. The Navier Stokes equation is being discretized by non conforming finite element method approach. The resulting discretized nonlinear algebraic system is being solved by using the fixpoint method and the Newton method and multigrid method for the linear sub-problem employed. The magnitude of the uniform upstream velocity under the study of the problem for Reynolds number in the range 1 < Re < 100 and the angle of attack of the upstream velocity at α = -5; 0; 5 degrees performed. Analysis of the resulting drag and lift forces acting on obstacles with respect to the angle of attack of the upstream velocity and the Reynolds number is made. Moreover, the influence of one obstacle on the resulting drag and lift coefficients of other obstacles determined. The results are being presented in a graphical and vector form.


Author(s):  
H. Naji ◽  
O. El Yahyaoui ◽  
G. Mompean

The ability of two explicit algebraic Reynolds stress models (EARSMs) to accurately predict the problem of fully turbulent flow in a straight square duct is studied. The first model is devised by Gatski and Rumsey (2001) and the second is the one derived by Wallin and Johansson (2000). These models are studied using a priori procedure based on data resulting from direct numerical simulation (DNS) of the Navier-Stokes equations, which is available for this problem. For this case, we show that the equilibrium assumption for the anisotropy tensor is found to be correct. The analysis leans on the maps of the second and third invariants of the Reynolds stress tensor. In order to handle wall-proximity effects in the near-wall region, damping functions are implemented in the two models. The predictions and DNS obtained for a Reynolds number of 4800 both agree well and show that these models are able to predict such flows.


Sign in / Sign up

Export Citation Format

Share Document