Performance Improvement of Capacitive Deionization for Water Desalination Using a Multi-Step Buffered Approach

Author(s):  
Yasamin Salamat ◽  
Carlos A. Rios Perez ◽  
Carlos Hidrovo

Due to the increasing demand for clean and potable water stemming from population growth and exacerbated by the scarcity of fresh water resources, more attention has been drawn to different and innovative methods for water desalination. Capacitive deionization (CDI) is a relatively new, low maintenance, and energy efficient technique for desalinating brackish water. In this technique, an electrical field is employed to adsorb ions into a high-porous media. After the saturation of the porous electrodes, their adsorption capacity can be restored through a regeneration process. Various parameters affect the overall performance of CDI. The flow rate at which water is purified in CDI plays an essential role in its ultimate performance. Many studies have shown that desalination percentage decreases as flow rate increases in CDI, since the advection of ions in the flow becomes more dominant than their diffusion toward the electrodes. However, herein, based on a physical model previously developed, we conjecture that for a given amount of time and volume of water, multiple desalination cycles in a high flow rate regime will outperform desalinating in a single cycle at a low flow rate. Moreover, splitting a CDI unit into two sub-units, with the same total length, will lead to higher desalination. Based on these premises, we introduce a new approach aimed at enhancing the overall performance of CDI. An array of CDI cells are sequentially connected to each other with intermediate solutions placed in between them. These intermediate solutions act as buffers to homogenize the outlet concentration of the preceding cell and maintain a constant inlet concentration for the following cell. Desalination tests were conducted to compare the performance of the proposed system, consisting of two CDI units and one intermediate solution buffer, with a two-cascaded-CDI unit system with no intermediate solution. Desalination tests were performed in a high flow rate regime with a low salinity initial solution of NaCl in water. In the buffered arrangement, the concentration of the solution buffer was set at the minimum average outlet concentration of the first CDI test. Experimental data demonstrated the improved performance of the buffered system over the non-buffered system, in terms of desalination percentage and energy consumption. Increasing the number of CDI units and solution buffers in a buffered system, the new proposed method will lead to lower amount of energy consumed per unit volume of the desalinated water.

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Yasamin Salamat ◽  
Carlos A. Rios Perez ◽  
Carlos Hidrovo

Due to the increasing demand for clean and potable water stemming from population growth and exacerbated by the scarcity of fresh water resources, more attention has been drawn to innovative methods for water desalination. Capacitive deionization (CDI) is a low maintenance and energy efficient technique for desalinating brackish water, which employs an electrical field to adsorb ions into a high-porous media. After the saturation of the porous electrodes, their adsorption capacity can be restored through a regeneration process. Herein, based on a physical model previously developed, we conjecture that for a given amount of time and volume of water, multiple desalination cycles in a high flow rate regime will outperform desalinating in a single cycle at a low flow rate. Moreover, splitting a CDI unit into two subunits, with the same total length, will lead to higher desalination. Based on these premises, we introduce a new approach aimed at enhancing the overall performance of CDI. An array of CDI cells are sequentially connected to each other with intermediate solutions placed in between them. Desalination tests were conducted to compare the performance of the proposed system, consisting of two CDI units and one intermediate solution buffer, with a two-cascaded-CDI unit system with no intermediate solution. Experimental data demonstrated the improved performance of the buffered system over the nonbuffered system, in terms of desalination percentage and energy consumption. The new proposed method can lead to lower amount of energy consumed per unit volume of the desalinated water.


2018 ◽  
Vol 152 ◽  
pp. 02015
Author(s):  
Yoong Sion Ong ◽  
Ken Sim Ong ◽  
Y.k. Tan ◽  
Azadeh Ghadimi

A conventional design of rainwater harvesting system collects and directs the rainwater through water piping from roof of building to the water storage. The filtration system which locates before the water tank storage and first flush bypass system is the main focus of the research. A filtration system consists of a control volume of filter compartment, filter screen (stainless steel mesh) and water piping that direct the water flow. The filtration efficiency of an existing filter “3P Volume Filter VF1” by industrial company is enhanced. A full scale filter design prototype with filter screen of 1000 μm stainless steel metal mesh is tested to compare with the original filter system design. Three types of water inlet setups are tested. Among the proposed water inlet setups, the 90° inlet setup with extension provides the best filtration rate per unit time, following by the 45° inlet setup. The 45° and 90° inlet setup has similar filtration efficiency at low to medium flow rate while 45° inlet setup has better efficiency at high flow rate. The filtration efficiency with the 90° inlet setup with extension is observed to maintain at highest value at medium to high flow rate. The overall filtration performance achieved by the 90° inlet setup with extension at low to high flow rate is between 34.1 to 35.7%.


1992 ◽  
Vol 96 (3) ◽  
pp. 1228-1233 ◽  
Author(s):  
Laszlo Gyorgyi ◽  
Richard J. Field ◽  
Zoltan Noszticzius ◽  
William D. McCormick ◽  
Harry L. Swinney

2017 ◽  
Vol 18 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Tapio Lantela ◽  
Matti Pietola

2019 ◽  
Author(s):  
Luis Vergara ◽  
Francisco Bacellar ◽  
Marcelo Neves ◽  
Arthur Watson ◽  
Grant Harris

2017 ◽  
Vol 51 (19) ◽  
pp. 11224-11234 ◽  
Author(s):  
Tina Šantl-Temkiv ◽  
Pierre Amato ◽  
Ulrich Gosewinkel ◽  
Runar Thyrhaug ◽  
Anaïs Charton ◽  
...  

2012 ◽  
Vol 2012 (0) ◽  
pp. 147-148
Author(s):  
Takuya AGAWA ◽  
Junichiro FUKUTOMI ◽  
Toru SHIGEMITSU

Sign in / Sign up

Export Citation Format

Share Document