Modeling Jet Erosion of Particle Beds

Author(s):  
Leonard F. Pease ◽  
Judith Ann Bamberger ◽  
Michael J. Minette

Here we present and benchmark an analytical model to describe the radial extent of erosion of settled particle beds by radial wall jets as a function of time. The extent of erosion is an essential measure of the performance of vessels mixed by arrays of radial wall jets because portions of vessel floors not cleared of settled particles may accumulate undesirable constituents. We derive a model of the cleared radius as a function of time scaled so that fits may be described using only two free parameters. We find remarkably good agreement between experimental data and the model upon fitting. Extracted fitting parameters are shown to be reasonable. The influence of nozzle transience on erosion transience has also been evaluated. We find that nozzle transience explains the initially slower rate of erosion and decreases the final extent of erosion by one to three nozzle diameters for the cases considered. Future work remains to evaluate the dimensionless groups from conservation laws and account for vessel curvature.

Author(s):  
Leonard F. Pease ◽  
Judith Ann Bamberger ◽  
Michael J. Minette

Here we observe the spatial and temporal patterns that erosion fronts driven by pulsed radial wall jets develop in double ring arrays of pulse tubes within slurry mixing vessels with curved bottoms. Although erosion of unbounded particle beds driven by individual steady jets has been studied for decades, the patterns developed within mixing vessels as neighboring transient erosion fronts collide and the subsequent relaxation of the particle bed towards the vessel center when the jets stop (i.e., as the pulse tubes refill within mixing vessels) remain incompletely understood. Relaxation here refers to motion of fluidized particle beds that were driven toward the vessel seam by radial wall jets that subsequently return or relax from the seam toward the center of the vessel when the jets turn off. Relaxation does not refer to downward individual or hindered particle settling. Spatial variations in the particle bed due to these relaxing particle beds comprise an important “initial” condition to the mathematical description of the evolution of the jet driven erosion front, and erosion fronts other than the one that expands radially from the pulse tube axis have only recently been described. For example, Bamberger, et al. (2017) [9], recently evaluated five selected cases of erosion patterns found in vessels 15 and 70 inches in diameter with 2:1 semi-elliptical bottoms. A highlight of that study was the discovery of a second type of erosion front that forms at the plane of symmetry between two adjacent pulse tubes. As neighboring radial wall jets collide they form an upwelling sheet of fluid; this second type of erosion front forms immediately beneath this upwelling flow. However, variations in this type of planar erosion front have not been cataloged previously. In this study, we systematically probe the erosion fronts driven by these upwelling sheets in greater detail and evaluate the relaxation of the particle bed to its “initial” condition after the pulse ceases. Variations in the erosion patterns and particle bed relaxation are evaluated as a function of particle concentration, density, and size. This study specifically focusses on video images collected from the 15 inch vessel because it provides distinctive visualization of erosion pattern behavior. We find the upwelling sheets to be more influential on the erosion patterns at lower particle concentrations, making these findings particularly important to low solids concentration vessels. At lower particle concentrations, flow at the base of the plane of symmetry readily erodes particle beds. At higher particle concentrations, piles of unmobilized solids accumulate beneath colliding jets either because the erosion mechanism vanishes or because erosion at the plane of symmetry is slow compared to radial erosion. We also find that the upwelling sheets introduce a flow that drives erosion patterns from outer ring jets toward the vessel center along the curved vessel floor along the plane of symmetry between nozzles. We further find that the rate of particle bed relaxation back toward the vessel center after the pulse ceases may correlate with concentration, particle density, and size. Higher concentrations and particle densities relax faster. The rate at which the entire bed relaxes toward the vessel center is faster near the vessel seam but slows as the relaxing front approaches the vessel center. This paper discusses competing mechanisms to explain these observations, including particle rolling, bed avalanches, gravity driven fluidized bed motion, and suspended particle sedimentation.


2020 ◽  
Author(s):  
Simone Mancini ◽  
Koen Boorsma ◽  
Marco Caboni ◽  
Marion Cormier ◽  
Thorsten Lutz ◽  
...  

Abstract. The disruptive potential of floating wind turbines has attracted the interest of both industry and scientific community. Lacking a rigid foundation, such machines are subject to large displacements whose impact on the aerodynamic performance is not yet fully acknowledged. In this work, the unsteady aerodynamic response to an harmonic surge motion of a scaled version of the DTU10MW turbine is investigated in detail. The imposed displacements have been chosen representative of typical platform motions. The results of different numerical models are validated against high fidelity wind tunnel tests specifically focused on the aerodynamics. Also a linear analytical model, relying on the quasi-steady assumption, is presented as a theoretical reference. The unsteady responses are shown to be dominated by the first surge harmonic and a frequency domain characterization, mostly focused on the thrust oscillation, is conducted involving aerodynamic damping and mass parameters. A very good agreement among codes, experiments and quasi-steady theory has been found clarifying some literature doubts. A convenient way to describe the unsteady results in non-dimensional form is proposed, hopefully serving as reference for future work.


2009 ◽  
Vol 622 ◽  
pp. 135-144 ◽  
Author(s):  
MELISSA J. SPANNUTH ◽  
JEROME A. NEUFELD ◽  
J. S. WETTLAUFER ◽  
M. GRAE WORSTER

We study the axisymmetric propagation of a viscous gravity current over a deep porous medium into which it also drains. A model for the propagation and drainage of the current is developed and solved numerically in the case of constant input from a point source. In this case, a steady state is possible in which drainage balances the input, and we present analytical expressions for the resulting steady profile and radial extent. We demonstrate good agreement between our experiments, which use a bed of vertically aligned tubes as the porous medium, and the theoretically predicted evolution and steady state. However, analogous experiments using glass beads as the porous medium exhibit a variety of unexpected behaviours, including overshoot of the steady-state radius and subsequent retreat, thus highlighting the importance of the porous medium geometry and permeability structure in these systems.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 444 ◽  
Author(s):  
Scott ◽  
Gabriel ◽  
Dubé ◽  
Penlidis

Multi-component polymers can provide many advantages over their homopolymer counterparts. Terpolymers are formed from the combination of three unique monomers, thus creating a new material that will exhibit desirable properties based on all three of the original comonomers. To ensure that all three comonomers are incorporated (and to understand and/or predict the degree of incorporation of each comonomer), accurate reactivity ratios are vital. In this study, five terpolymerization studies from the literature are revisited and the ‘ternary’ reactivity ratios are re-estimated. Some recent studies have shown that binary reactivity ratios (that is, from the related copolymer systems) do not always apply to ternary systems. In other reports, binary reactivity ratios are in good agreement with terpolymer data. This investigation allows for the comparison between previously determined binary reactivity ratios and newly estimated ‘ternary’ reactivity ratios for several systems. In some of the case studies presented herein, reactivity ratio estimation directly from terpolymerization data is limited by composition restrictions or ill-conditioned systems. In other cases, we observe similar or improved prediction performance (for ternary systems) when ‘ternary’ reactivity ratios are estimated directly from terpolymerization data (compared to the traditionally used binary reactivity ratios). In order to demonstrate the advantages and challenges associated with ‘ternary’ reactivity ratio estimation, five case studies are presented (with examples and counter-examples) and troubleshooting suggestions are provided to inform future work.


1989 ◽  
Vol 111 (3) ◽  
pp. 225-231 ◽  
Author(s):  
M. F. Lightstone ◽  
G. D. Raithby ◽  
K. G. T. Hollands

The degree of thermal stratification maintained in hot water storage tanks has a significant impact on the performance of a solar energy system. This paper presents an axisymmetric finite volume model analysis of the charging of a tank with hot water, and compares the predictions with experimental results from the literature. The results show the capabilities and deficiencies of such a modeling technique for this type of problem. The importance of inlet fluid turbulence to tank destratification is demonstrated and inclusion of a simple turbulence model is found sufficient to yield good agreement with measurement. The model predictions also provide insight into when a simple one-dimensional plug flow model will be adequate. In addition, the model is used to evaluate the effect during charging of heat conduction in the tank wall on the temperature field in the fluid. Recommendations are made regarding future work on the development of detailed numerical codes for simulating the charging of liquid storage tanks.


2015 ◽  
Vol 233-234 ◽  
pp. 522-525
Author(s):  
Oksana Anatoljevna Li ◽  
Sergey Viktorovich Komogortsev ◽  
Rauf S. Iskhakov ◽  
Lidia Aleksandrovna Chekanova ◽  
Evgeniy V. Eremin

In this paper we have proposed a modified expression for the fitting M(T) data in Co-P powders with nanocorundum and nanodiamond precipitates. The expression for M(T) takes into account the effects from both thermal magnetic excitations – Bloch’s T 3/2 law and temperature dependence of the magnetic anisotropy. The fitting parameters are spontaneous magnetization at absolute zero temperature, Bloch constant and order of magnetic anisotropy constant. The obtained Bloch constant is in good agreement with literature data. The order of magnetic anisotropy constant is found to be about 3 that is surprising result and supposedly comes from multiphase nature of the investigated Co-P powder.


Author(s):  
Micah Hodgins ◽  
Gianluca Rizzello ◽  
Alex York ◽  
Stefan Seelecke

In this work a high-frequency dynamic model of a pre-loaded circular DEAP actuator is developed and experimentally validated. The model is capable of predicting both the static and dynamic response of the actuator. The static response is modeled based on a free energy approach and consists of an Ogden term representing the elastic energy, and a electrical term representing the electrical-mechanical coupling [1]. The addition of viscoelastic elements (spring-dashpot configurations) enables the model to capture the dynamic response. The Ogden coefficients were first identified through a quasi-static force-displacement test of the actuator. A series of validation tests of the actuator at various pre-loads and voltage frequencies showed the model to be in good agreement with the experiments. The model is shown to accurately predict the actuators observed natural frequencies as the pre-deflection and the stiffness of the spring were changed. Future work will include additions to the model to account for relaxation and creep inherent in DEAP material.


Author(s):  
Mikhail I. Degtyarev ◽  
Tatiana I. Chashchukhina ◽  
Lyudmila M. Voronova ◽  
Alexander M. Patselov ◽  
Vitaliy P. Pilyugin ◽  
...  

The evolution of metals micro/nano-structure upon severe plastic deformation (SPD) is still far to be theoretically explained, while experimental datasets are persistently growing for several decades. Major problem associated with understanding of SPD is related to a fact that the latter is a synergetic product of several competing physical effects which alter the material micro/nano-structure. In attempt to find deformational boundaries, where predominantly one mechanism determines the micro/nano-structure, in this paper we propose a continuous piecewise model for the analysis of experiments on material hardness vs strain of SPD processed materials. The novelty of this approach lies in its ability to find, as free-fitting parameters, the strain breakpoints which separate different micro/nano-structure modes generated upon SPD process. The model is applied to analyse experimental data for polycrystalline samples of pure iron and two distinctive strain breakpoints are revealed with good accuracies. This finding is in a good agreement with our earlier results on TEM microscopy studies on pure iron polycrystals after SPD treatment.


2021 ◽  
pp. 106-149
Author(s):  
Alireza Heidari ◽  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
...  

In the current research, Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) effect on the stop growth of cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations. Is investigated. The calculation of thickness and optical constants of Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) effect on the stop growth of cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol–gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg–Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2); Stop Growth; Cancer Cells; Tissues and Tumors; Synchrotron and Synchrocyclotron Radiations


Sign in / Sign up

Export Citation Format

Share Document