Systematic Parameter Estimation and Sensitivity Analysis Using a Multidimensional PEMFC Model Coupled With DAKOTA

Author(s):  
Brian Carnes ◽  
Ken S. Chen ◽  
Fangming Jiang ◽  
Gang Luo ◽  
Chao-Yang Wang

Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 750 ◽  
Author(s):  
Damien Guilbert ◽  
Gianpaolo Vitale

The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles, which so far has not been reported in the literature. Thanks to a thorough experimental study, the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.


Author(s):  
Arganthae¨l Berson ◽  
Jon G. Pharoah

Efficient water management is crucial for the good performances of proton-exchange membrane fuel cells (PEMFCs). The geometric and physical characteristics of the components of a PEMFC as well as operating conditions have an impact on the transport of water through the porous transport layer (PTL) and the two-phase flow regimes in the microchannels. One parameter of importance is the local temperature, which affects properties such as surface tension and is coupled with phase change. Indeed, a temperature difference of about 5K is expected across the PTL, with spatial variations due to the geometry of the flow field plate. We present preliminary results obtained with a first experimental setup for the ex-situ characterization of two-phase flow regimes in the flow channels. Water is pushed through the PTL, which is sandwiched between a porous metal foam and the flow field plate. The air flow rate, temperature and humidity can be controlled. The cell can be heated up by applying an electrical current through the metal foam. A transparent window is located on top of the flow channel. The two-phase flow within the micro-channels is visualized using a high-speed camera and laser-induced fluorescence. Preliminary results obtained under isothermal conditions at room temperature show that different two-phase flow regimes occur in the channels depending on the operating conditions, in good qualitative agreement with data from the literature. Eventually, a new visualization cell is presented that is expected to correct the flaws of the previous design and will allow a better thermal control. It will be possible to adjust the temperature gradient and the mean temperature in order to observe their impact on two-phase flow regimes for different types of PTL and flow rates. The results will provide a better understanding of water transport in PEMFC and benchmark data for the validation of numerical models.


Author(s):  
A. S. Bansode ◽  
T. Sundararajan ◽  
Sarit K. Das

The presence of liquid water at the cathode of proton exchange membrane fuel cell hinders the reactant supply to the electrode and is known as electrode flooding. The flooding at the cathode due to the presence of two-phase flow of water is one of the major performance limiting conditions. A pseudo-two-dimensional analytical model is developed to predict the inception of two-phase flow along the length of the cathode channel. The diffusion of the water is considered to take place only across the gas diffusion layer (GDL). The current density corresponding to the inception of two-phase flow, called the threshold current density, is found to be a function of the channel length and height, GDL thickness, velocity, and relative humidity of the air at the inlet and cell temperature. Thus, for given design and operating conditions, the analytical model is capable of predicting the inception of two-phase flow, and therefore a flooding condition can be avoided in the first place.


Author(s):  
D. A. Caulk

This paper describes an approximate method for analyzing two-phase flow of gas and liquid water in fuel cell channels, whose surfaces are sufficiently hydrophilic for liquid water to wick spontaneously into the channel corners. This analysis is used to address the important question of whether the gas flow at typical stoichiometries in such channels is sufficient to remove all the liquid water generated in a proton exchange membrane fuel cell. Since fuel channels are usually much narrower than they are long, it is possible to adopt the usual approximations of lubrication theory and to decompose the general solution for the liquid motion into two parts: (1) that driven by the channel pressure gradient and (2) that driven by surface shear stress from the faster moving gas. When both parts of the solution are combined with the mass balance equations, it is possible to derive a pair of partial differential equations for the water depth and gas flow rate that depend on distance down the channel and time. Steady solutions of these equations are explored to determine the amount of liquid water that accumulates in the channel over a broad range of fuel cell operating conditions.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 822
Author(s):  
Yena Choi ◽  
Woojung Lee ◽  
Youngseung Na

Water electrolysis is an eco-friendly method for the utilization of renewable energy sources which provide intermittent power supply. Proton exchange membrane water electrolysis (PEMWE) has a high efficiency in this regard. However, the two-phase flow of water and oxygen at the anode side causes performance degradation, and various operating conditions affect the performance of PEMWE. In this study, the effects of four control parameters (operating temperature, flow rate, cell orientation, and pattern of the channel) on the performance of PEMWE were investigated. The effects of the operating conditions on its performance were examined using a 25 cm2 single-cell. Evaluation tests were conducted using in situ methods such as polarization curves and electrochemical impedance spectroscopy. The results demonstrated that a high operating temperature and low flow rate reduce the activation and ohmic losses, and thereby enhance the performance of PEMWE. Additionally, the cell orientation affects the performance of PEMWE owing to the variation in the two-phase flow regime. It was observed that the slope of specific sections in the polarization curve rapidly increases at a specific cell voltage.


Author(s):  
Han-Sang Kim ◽  
Tae-Hun Ha ◽  
Sung-Jin Park ◽  
Kyoungdoug Min ◽  
Minsoo Kim

Visualization technique was used to better understand the water build-up phenomena on the cathode side of a proton exchange membrane (PEM) unit fuel cell. In this study, a transparent PEM unit fuel cell with an active area of 25 cm2 was designed and fabricated to allow for the visualization of cathode channel with fuel cell performance characteristics. Two-phase flow due to the electrochemical reaction of fuel cell was experimentally investigated. The images photographed by CCD camera with various cell temperatures (30–50°C) and different inlet humidification levels were presented in this study. Results indicated that the flooding on the cathode side first occurs near the exit of cathode flow channel. As the fuel cell operating temperature increases, it was found that water droplets tend to evaporate easily because of increased saturation vapor pressure and it can have an influence on lowering the flooding level. The approaches of this study can effectively contribute to the detailed researches on water transport phenomena including modeling water transport of an operating PEM fuel cell.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4069
Author(s):  
Mingzhang Pan ◽  
Chengjie Pan ◽  
Jinyang Liao ◽  
Chao Li ◽  
Rong Huang ◽  
...  

As a highly nonlinear system, the performance of proton exchange membrane fuel cell (PEMFC) is controlled by various parameters. If the effects of all parameters are considered during the performance optimization, low working efficiency and waste of resources will be caused. The development of sensitivity analysis for parameters can not only exclude the parameters which have slight effects on the system, but also provide the reasonable setting ranges of boundary values for simulation of performance optimization. Therefore, sensitivity analysis of parameters is considered as one of the methods to optimize the fuel cell performance. According to the actual operating conditions of PEMFC, the fluctuation ranges of seven sets of parameters affecting the output performance of PEMFC are determined, namely cell operating temperature, anode/cathode temperature, anode/cathode pressure, and anode/cathode mass flow rate. Then, the control variable method is used to qualitatively analyze the sensitivity of main parameters and combines with the Monte Carlo method to obtain the sensitivity indexes of the insensitive parameters under the specified current density. The results indicate that among these parameters, the working temperature of the fuel cell is the most sensitive to the output performance under all working conditions, whereas the inlet temperature is the least sensitive within the range of deviation. Moreover, the cloud maps of water content distribution under the fluctuation of three more sensitive parameters are compared; the results verify the simulated data and further reveal the reasons for performance changes. The workload of PEMFC performance optimization will be reduced based on the obtained results.


Author(s):  
D. A. Caulk

This paper describes an approximate method for analyzing two-phase flow of gas and liquid water in fuel cell channels whose surfaces are sufficiently hydrophilic for liquid water to wick spontaneously into the channel corners. This analysis is used to address the important question of whether the gas flow at typical stoichiometries in such channels is sufficient to remove all the liquid water generated in a Proton Exchange Membrane (PEM) fuel cell. Since fuel channels are usually much narrower than they are long, it is possible to adopt the usual approximations of lubrication theory and decompose the general solution for the liquid motion into two parts: (1) that driven by the channel pressure gradient, and (2) that driven by surface shear stress from the faster moving gas. When both parts of the solution are combined with the mass balance equations, it is possible to derive a pair of partial differential equations for the water depth and gas flow rate that depend on distance down the channel and time. Steady solutions of these equations are explored to determine the amount of liquid water that accumulates in the channel over a broad range of fuel cell operating conditions.


Sign in / Sign up

Export Citation Format

Share Document