scholarly journals Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade: Part 1 — Experimental Measurements

Author(s):  
Ronald S. Bunker ◽  
Todd G. Wetzel ◽  
David L. Rigby

A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major sub-channels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme corner. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

Author(s):  
David L. Rigby ◽  
Ronald S. Bunker

A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-ω turbulence model. A structured multi-block grid is used with approximately 4.5 million cells, and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.


Author(s):  
S.-Y. Hu ◽  
X. Chi ◽  
T. I.-P. Shih ◽  
K. M. Bryden ◽  
M. K. Chyu ◽  
...  

CFD simulations were performed to study the flow and heat transfer in a U-duct, relevant to internal cooling of the first-stage turbine component in electric-power-generation, gas-turbine engines. Parameters studied include (1) two aspect ratios of the duct cross section, i.e. H/W = 1 and H/W = 0.25; (2) smooth duct and duct lined with pin fins of height H arranged in a staggered fashion; and (3) two rotational speeds: 0 rpm and 3,600 rpm. In all cases, the wall temperature is 1173 K; the coolant temperature at the U-duct inlet is 623 K; and the back pressure at the exit of the U-duct is 25.17 atm. The Reynolds numbers studied are 150,000 for the duct with the 4-to-1 aspect ratio, and 150,000 and 375,000 for the duct with the 1-to-1 aspect ratio. When there is rotation at 3,600 rpm, the rotational numbers corresponding to these Reynolds numbers and duct aspect ratios are 0.592, 1.64, and 4.11, respectively. Result is presented to show the nature of the flow, the temperature distribution, and the surface heat transfer with focus on the flow and heat transfer in the tip-turn region as a function of the parameters investigated. This computational study is based on 3-D steady RANS. The ensemble-averaged continuity, compressible Navier-Stokes, and energy equations were closed by the thermally perfect equation of state with temperature-dependent gas properties and the two-equation realizeable k-ε turbulence model with and without wall functions.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Author(s):  
L. W. Soma ◽  
F. E. Ames ◽  
S. Acharya

The trailing edge of a vane is one of the most difficult areas to cool due to a narrowing flow path, high external heat transfer rates, and deteriorating external film cooling protection. Converging pedestal arrays are often used as a means to provide internal cooling in this region. The thermally induced stresses in the trailing edge region of these converging arrays have been known to cause failure in the pedestals of conventional solidity arrays. The present paper documents the heat transfer and pressure drop through two high solidity converging rounded diamond pedestal arrays. These arrays have a 45 percent pedestal solidity. One array which was tested has nine rows of pedestals with an exit area in the last row consistent with the convergence. The other array has eight rows with an expanded exit in the last row to enable a higher cooling air flow rate. The expanded exit of the eight row array allows a 30% increase in the coolant flow rate compared with the nine row array for the same pressure drop. Heat transfer levels correlate well based on local Reynolds numbers but fall slightly below non converging arrays. The pressure drop across the array naturally increases toward the trailing edge with the convergence of the flow passage. A portion of the cooling air pressure drop can be attributed to acceleration while a portion can be attributed to flow path losses. Detailed array static pressure measurements provide a means to develop a correlation for the prediction of pressure drop across the cooling channel. Measurements have been acquired over Reynolds numbers based on exit flow conditions and the characteristic pedestal length scale ranging from 5000 to over 70,000.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades, and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large-scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane, and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses, and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper (2008, “Letterbox Trailing Edge Heat Transfer—Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness,” ASME, Paper No. GT2008-50474), which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


Author(s):  
Rui Kan ◽  
Li Yang ◽  
Jing Ren ◽  
Hongde Jiang

Thermal issues of gas turbine blade trailing edge are complex and challenging, due to limited space for effective cooling. The trailing edge cavities are usually large aspect ratio ducts with lateral ejection. The objective of this study is to investigate the effects of different rib configurations and lateral ejection on heat transfer characteristics inside a trailing edge channel. The investigations were conducted on a large aspect ratio wedge-shaped channel with square ribs of e/Dh = 0.05, under Reynolds number 15,000. Twelve different configurations were tested: 1)three rib types, including a symmetry V-shaped rib configuration and two non-symmetry V-shaped rib configurations, of which the rib angles are 60 degrees, 2) two rib pitches, P/e = 10 and P/e = 5, 3) two flow directions, with an open tip outlet or with lateral ejection. Spatially resolved heat transfer distributions were obtained using the transient thermochromic liquid crystal experimental method. The configurations were also investigated numerically for the detailed flow field and for the validation of CFD codes. Results show that with lateral ejection, the heat transfer coefficients decrease from inlet to outlet. The heat transfer near the ejection holes is enhanced while heat transfer coefficients near the wall opposite to the exit holes decrease. The curvature of the streamlines creates a large separation area near the end of the channel and thus results in low local heat transfer coefficients. The P/e = 10 configurations have higher average heat transfer compared with P/e = 5 configurations. Average heat transfer coefficient is the highest with the center of the V-shaped rib placed at the middle of the channel, and is the lowest when the V-shaped rib center is located near the narrow part of the channel.


Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aero-combustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper [1], which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


2005 ◽  
Vol 128 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Takayuki Tsutsui ◽  
Masafumi Kawahara

Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio H∕D ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when H∕δ=0.24.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
R. M. Mathison ◽  
C. W. Haldeman ◽  
M. G. Dunn

The independent influences of vane trailing edge and purge cooling are studied in detail for a one-and-one-half stage transonic high-pressure turbine operating at design-corrected conditions. This paper builds on the conclusions of Part I, which investigated the combined influence of all cooling circuits. Heat-flux measurements for the airfoil, platform, tip, and root of the turbine blade, as well as the shroud and the vane side of the purge cavity, are used to track the influence of cooling flow. By independently varying the coolant flow rate through the vane trailing edge or purge circuit, the region of influence of each circuit can be isolated. Vane trailing edge cooling is found to create the largest reductions in blade heat transfer. However, much of the coolant accumulates on the blade suction surface and little influence is observed for the pressure surface. In contrast, the purge cooling is able to cause small reductions in heat transfer on both the suction and pressure surfaces of the airfoil. Its region of influence is limited to near the hub, but given that the purge coolant mass flow rate is 1/8 that of the vane trailing edge, it is impressive that any impact is observed at all. The cooling contributions of these two circuits account for nearly all of the cooling reductions observed for all three circuits in Part I, indicating that the vane inner cooling circuit that feeds most of the vane film-cooling holes has little impact on the downstream blade heat transfer. Time-accurate pressure measurements provide further insight into the complex interactions in the purge region that govern purge coolant injection. While the pressures supplying the purge coolant and the overall coolant flow rate remain fairly constant, the interactions of the vane pressure field and the rotor pressure field create moving regions of high pressure and low pressure at the exit of the cavity. This results in pulsing regions of injection and ingestion.


Author(s):  
Shuo-Cheng Hung ◽  
Szu-Chi Huang ◽  
Yao-Hsien Liu

The liquid crystal thermography was used to investigate the heat transfer of non-uniform pin-fin arrays in a rotating rectangular channel (AR = 4:1) at a channel orientation of 135°. The pin-fin array consisted of four and three pins in a staggered arrangement. The different sized pins were inserted at the rows exhibiting four pins, which produced a non-uniform distribution of the pin-fin array. The experiments were operated at Reynolds numbers of 10,000 and 20,000 for both stationary and rotating conditions. The rotation number varied from 0 to 0.33 and the buoyancy parameter ranged from 0 to 0.27. Results indicated that various heat transfer contours were observed as a result of flow separation and vortices caused by non-uniform pins. Compared to the stationary case, rotation increased heat transfer on both trailing and leading surfaces. The pin-fin array consisted of 6 and 9 mm pins produced the highest heat transfer and frictional losses under rotation condition.


Sign in / Sign up

Export Citation Format

Share Document