Heat Transfer and Pressure Drop in a Converging Pedestal Array With Exit Area Variation

Author(s):  
L. W. Soma ◽  
F. E. Ames ◽  
S. Acharya

The trailing edge of a vane is one of the most difficult areas to cool due to a narrowing flow path, high external heat transfer rates, and deteriorating external film cooling protection. Converging pedestal arrays are often used as a means to provide internal cooling in this region. The thermally induced stresses in the trailing edge region of these converging arrays have been known to cause failure in the pedestals of conventional solidity arrays. The present paper documents the heat transfer and pressure drop through two high solidity converging rounded diamond pedestal arrays. These arrays have a 45 percent pedestal solidity. One array which was tested has nine rows of pedestals with an exit area in the last row consistent with the convergence. The other array has eight rows with an expanded exit in the last row to enable a higher cooling air flow rate. The expanded exit of the eight row array allows a 30% increase in the coolant flow rate compared with the nine row array for the same pressure drop. Heat transfer levels correlate well based on local Reynolds numbers but fall slightly below non converging arrays. The pressure drop across the array naturally increases toward the trailing edge with the convergence of the flow passage. A portion of the cooling air pressure drop can be attributed to acceleration while a portion can be attributed to flow path losses. Detailed array static pressure measurements provide a means to develop a correlation for the prediction of pressure drop across the cooling channel. Measurements have been acquired over Reynolds numbers based on exit flow conditions and the characteristic pedestal length scale ranging from 5000 to over 70,000.

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
N. J. Fiala ◽  
I. Jaswal ◽  
F. E. Ames

Heat transfer and film cooling distributions have been acquired for a vane trailing edge with letterbox partitions. Additionally, pressure drop data have been experimentally determined across a pin fin array and a trailing edge slot with letterbox partitions. The pressure drop across the array and letterbox trailing edge arrangement was measurably higher than for the gill slot geometry. Experimental data for the partitions and the inner suction surface region downstream from the slot have been acquired over a four-to-one range in vane exit condition Reynolds number (500,000, 1,000,000, and 2,000,000), with low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions. At these conditions, both heat transfer and adiabatic film cooling distributions have been documented over a range of blowing ratios (0.47≤M≤1.9). Heat transfer distributions on the inner suction surface downstream from the slot ejection were found to be dependent on both ejection flow rate and external conditions. Heat transfer on the partition side surfaces correlated with both exit Reynolds number and blowing ratio. Heat transfer on partition top surfaces largely correlated with exit Reynolds number but blowing ratio had a small effect at higher values. Generally, adiabatic film cooling levels on the inner suction surface are high but decrease near the trailing edge and provide some protection for the trailing edge. Adiabatic effectiveness levels on the partitions correlate with blowing ratio. On the partition sides adiabatic effectiveness is highest at low blowing ratios and decreases with increasing flow rate. On the partition tops adiabatic effectiveness increases with increasing blowing ratio but never exceeds the level on the sides. The present paper, together with a companion paper that documents letterbox trailing edge aerodynamics, is intended to provide engineers with the heat transfer and aerodynamic loss information needed to develop and compare competing trailing edge designs.


Author(s):  
N. J. Fiala ◽  
I. Jaswal ◽  
F. E. Ames

Heat transfer and film cooling distributions have been acquired for a vane trailing edge with letterbox partitions. Additionally, pressure drop data have been experimentally determined across a pin fin array and a trailing edge slot with letterbox partitions. The pressure drop across the array and letterbox trailing edge arrangement was measurably higher than for the gill slot geometry. Experimental data for the partitions and the inner suction surface region downstream from the slot have been acquired over a four to one range in vane exit condition Reynolds number (500,000, 1,000,000 and 2,000,000), with low (0.7%), grid (8.5%), and aero-combustor (13.5%) turbulence conditions. At these conditions, both heat transfer and adiabatic film cooling distributions have been documented over a range of blowing ratios (0.47 ≤ M ≤ 1.9). Heat transfer distributions on the inner suction surface downstream from the slot ejection were found to be dependent on both ejection flow rate and external conditions. Heat transfer on the partition side surfaces correlated on both exit Reynolds number and blowing ratio. Heat transfer on partition top surfaces largely correlated on exit Reynolds number but blowing ratio had a small effect at higher values. Generally, adiabatic film cooling levels on the inner suction surface are high but decrease near the trailing edge and provide some protection for the trailing edge. Adiabatic effectiveness levels on the partitions correlate with blowing ratio. On the partition sides adiabatic effectiveness is highest at low blowing ratios and decreases with increasing flow rate. On the partition tops adiabatic effectiveness increases with increasing blowing ratio but never exceeds the level on the sides. The present paper, together with a companion paper which documents letterbox trailing edge aerodynamics, is intended to provide engineers with the heat transfer and aerodynamic loss information needed to develop and compare competing trailing edge designs.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades, and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large-scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane, and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses, and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper (2008, “Letterbox Trailing Edge Heat Transfer—Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness,” ASME, Paper No. GT2008-50474), which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


2021 ◽  
Author(s):  
Thanapat Chotroongruang ◽  
Prasert Prapamonthon ◽  
Rungsimun Thongdee ◽  
Thanapat Thongmuenwaiyathon ◽  
Zhenxu Sun ◽  
...  

Abstract Based on the Brayton cycle for gas-turbine engines, the high thermal efficiency and power output of a gas-turbine engine can be obtainable when the gas-turbine engine operates at high turbine inlet temperatures. However, turbine components e.g., inlet guide vane, rotor blade, and stator vane request high cooling performance. Typically, internal cooling and film cooling are two effective techniques that are widely used to protect high thermal loads for the turbine components in a state-of-the-art gas turbine. Consequently, the high thermal efficiency and power output can be obtained, and the turbine lifespan can be prolonged, also. On top of that, a comprehensive understanding of flow and heat transfer phenomena in the turbine components is very important. As a result, both experiments and simulations have been used to improve the cooling performance of the turbine components. In fact, the cooling air used in the internal cooling and film cooling is partially extracted from the compressor. Therefore, variations in the cooling air affect the cooling performance of the turbine components directly. This paper presents a numerical study on the influence of the cooling air on cooling-performance sensitivity of an internally convective turbine vane, MARK II using the computational fluid dynamics (CFD)/conjugate heat transfer (CHT) with the SST k-ω turbulence model. Result comparisons are conducted in terms of pressure, temperature, and cooling effectiveness under the effects of the inlet temperature, mass flow rate, turbulence intensity, and flow direction of the cooling air. The cooling-performance sensitivity to the coolant parameters is shown through variations of local cooling effectiveness, and area and volume-weighted average cooling effectiveness.


Author(s):  
F. E. Ames ◽  
N. J. Fiala ◽  
J. D. Johnson

Heat transfer and film cooling distributions have been acquired downstream from the exit of a nozzle guide vane gill slot (or cutback). Additionally, heat transfer and pressure drop data have been experimentally determined for a pin fin array within the gill slot geometry. Generally, average row pin fin heat transfer levels for the converging channel correlate quite well with archival literature. However, no generalized flow friction factor correlation was found to predict the pressure drop within the array. Experimental data for the region downstream from the gill slot have been acquired over a four to one range in vane exit condition Reynolds number, with low, grid, and aero-combustor turbulence conditions. At these conditions, both heat transfer and adiabatic film cooling distributions have been documented over a range of blowing ratios. Heat transfer distributions downstream from the gill slot ejection were found to be dependent on both ejection flow rate and external conditions. Generally, adiabatic film cooling levels are high but dissipate toward the trailing edge and provide some protection on the trailing edge. Heat transfer levels on the trailing edge are affected largely by the chord exit Reynolds number and the suction surface boundary layer condition. The present paper, together with a companion paper which documents gill slot aerodynamics, is intended to provide designers with the heat transfer and aerodynamic loss information needed to compare competing trailing edge designs.


Author(s):  
Fei Xue ◽  
Mohammad E. Taslim

Impingement cooling in airfoils cooling cavities, solely or combined with film and convective cooling, is a common practice in gas turbines. Depending on the cooling cavity design, the mass flow rate through individual crossover holes could vary significantly in the flow direction thus creating jets of different strengths in the target cavity. This jet flow variation, in turn, creates an impingement heat transfer coefficient variation along the channel. A test section, simulating two adjacent cooling cavities on the trailing side of an airfoil, is made up of two channels with trapezoidal cross-sectional areas. On the partition wall between the two channels, eleven crossover holes create the jets. Two distinct exit flow arrangements are investigated — a) jets, after interaction with the target surface, are turned towards the target channel exit axially and b) jets are exited from a row of racetrack-shaped slots along the target channel. Flow measurements are reported for individual holes and heat transfer coefficients on the eleven target walls downstream the jets are measured using the steady-state liquid crystal thermography technique. Smooth as well as rib-roughened target surfaces with four rib geometries (0°,45°, 90° and 135° rib angles) are tested. Correlations are developed for mass flow rate through each crossover hole for cases with different number of crossover holes, based on the pressure drop across the holes. Heat transfer coefficient variations along the target channel for all rib geometries and flow conditions are reported for a range of 5000 to 50000 local jet Reynolds numbers. Major conclusions of this study are: 1) A correlation is developed to successfully predict the mass flow rates through individual crossover holes for geometries with six to eleven crossover holes, based on the pressure drop across the holes, 2) impingement heat transfer coefficient correlates well with the local jet Reynolds number for both exit flow arrangements, and 3) the case of axial flow in the target channel exiting from the channel end, at higher jet Reynolds numbers, produced higher heat transfer coefficients than those in the case of flow exiting through a row of slots along the target channel opposite to the crossover holes.


2021 ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross-section, converges in both transverse and longitudinal directions, and is also skewed β = 120° with respect to the direction of rotation in order to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into eighteen isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full height configuration and two partial fin height arrangements (Sz = 2mm and 1mm). In all cases, the strip fins are 2mm wide (W) and 10mm long (Lf) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence the spanwise spacing Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300rpm. It is found that the full height strip-fin channel results in a more non-uniform spanwise heat transfer distribution than the partial height strip-fin channel. Both trailing and leading surface heat transfer coefficients are enhanced under rotation conditions. The 2mm height partial strip-fin channel provided the best thermal performance, and it is comparable to the performance of the converging channels with partial length circular pins. The strip-fin channel can be a design option when the pressure drop penalty is a major concern.


Author(s):  
M. L. Busche ◽  
L. P. Moualeu ◽  
N. Chowdhury ◽  
C. Tang ◽  
F. E. Ames

Leading edge heat loads on turbine airfoils can be reduced by increasing the diameter of the leading edge. The lower external heat transfer and more generous curvature may allow for cooling this region internally. Large diameter leading edge regions are expected to exhibit a relatively broad region with nearly constant heat transfer. However, the ability of internal passages to cool a surface diminishes with distance as cooling air picks up thermal energy within the passage. Two novel internal cooling geometries which incrementally replenish cooling air, using impingement holes distributed along the array, have been designed and tested. These cooling methods have been compared to a baseline high solidity passage in terms of both array heat transfer and pressure drop. Heat transfer rates and pressure drop have been determined on a row by row basis to provide a means to assess their ability to sustain adequate cooling levels across the entire leading edge region. The authors believe turbine airfoil designs integrating large diameter leading edge regions with properly designed internal passages have the potential to eliminate showerhead cooling arrays in many industrial gas turbine applications. This change is especially beneficial in environments where fuel or air impurities have the potential to clog leading edge showerhead cooling arrays. Heat transfer and pressure drop measurements were acquired in a bench scale test rig. Reynolds numbers ranged from approximately 5000 to 60,000 for the constant height channel arrays based on the pin diameter and the local maximum average velocity across a row. The high solidity pin fin arrays have an axial spacing (X/D) of 1.074 and a cross channel spacing (S/D) of 1.625. The constant section pin fin arrays have channel height to diameter ratios of 0.5. Each array has eight rows of pins with six pins per row in a staggered arrangement. Heat transfer testing was conducted using a constant temperature boundary condition.


Author(s):  
Hao-Wei Wu ◽  
Hootan Zirakzadeh ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

A multipassage internal cooling test model with a 180 deg U-bend at the hub was investigated. The flow is radially inward at the inlet passage while it is radially outward at the trailing edge passage. The aspect ratio (AR) of the inlet passage is 2:1 (AR = 2) while the trailing edge passage is wedge-shaped with side wall slot ejections. The squared ribs with P/e = 8, e/Dh = 0.1, α = 45 deg, were configured on both leading surface (LE) and trailing surface (TR) along the inlet passage, and also at the inner half of the trailing edge passage. Three rows of cylinder-shaped pin fins with a diameter of 3 mm were placed at both LE and TR at the outer half of the trailing edge passage. For without turning vane case, heat transfer on LE at hub turn region is increased by rotation while it is decreased on the TR. The presence of turning vane reduces the effect of rotation on hub turn portion. The combination of ribs, pin-fin array, and mass loss of cooling air through side wall slot ejection results in the heat transfer coefficient gradually decreased along the trailing edge passage. Correlation between regional heat transfer coefficients and rotation numbers is presented for with and without turning vane cases, and with channel orientation angle β at 90 deg and 45 deg.


1989 ◽  
Vol 111 (2) ◽  
pp. 116-123 ◽  
Author(s):  
S. C. Lau ◽  
J. C. Han ◽  
T. Batten

Experiments have been conducted to study the turbulent heat transfer and friction characteristics in pin fin channels with small trailing edge ejection holes that are commonly found in modern internally cooled turbine airfoils. The main objective of the investigation is to examine the effects of varying the length and the configuration of the trailing edge ejection holes on the overall heat transfer, the overall pressure drop, the local pressure distribution, and the local mass flow rate distribution in the pin fin channel. The staggered pin fin array (L/D = 1.0, X/D = S/D = 2.5) in the test channel has 15 rows of three pins. The diameter of the ejection holes is one-half the diameter of the pins. There are 30 or 23 ejection holes on one of the side walls of the test channel and six similar ejection holes at the radial flow exit. Experimental results are obtained for two trailing edge ejection hole lengths, four ejection hole configurations, and Reynolds numbers between 10,000 and 60,000. The results show that the overall heat transfer increases when the length of the trailing edge ejection holes is increased and when the trailing edge ejection holes are configured so that much of the cooling air is forced to flow farther downstream in the radial flow direction before exiting the pin fin channel through ejection holes. The overall Nusselt number can be correlated with an equation of the form NuD = a (ReD)b, where the values of the exponent b are about the same for all the test cases with trailing edge flow ejection. Results also show that the increase in the overall heat transfer is generally accompanied by an increase in the overall pressure drop (that is, an increase in the required pumping power), except that the overall heat transfer is lower and the overall pressure drop is higher when there is no radial flow ejection. In the cases with both radial and trailing edge flow ejection, about 15 to 20 percent of the flow exits through the tip bleed holes.


Sign in / Sign up

Export Citation Format

Share Document