Degradation Effects on Combined Cycle Power Plant Performance: Part 3 — Gas and Steam Turbine Degradation Effects

Author(s):  
A. I. Zwebek ◽  
P. Pilidis

This paper presents an investigation of the degradation effects that gas and steam turbine cycles components have on combined cycle (CCGT) power plant performance. Gas turbine component degradation effects were assessed with TurboMatch, the Cranfield Gas Turbine simulation code. A new code was developed to assess bottoming cycle performance deterioration. The two codes were then joined to simulate the combined cycle performance deterioration as a whole unit. Areas examined were gas turbine compressor and turbine degradation, HRSG degradation, steam turbine degradation, condenser degradation, and increased gas turbine back-pressure due to HRSG degradation. The procedure, assumptions made, and the results obtained are presented and discussed. The parameters that appear to have the greatest influence on degradation are the effects on the gas generator.

2004 ◽  
Vol 126 (2) ◽  
pp. 306-315 ◽  
Author(s):  
A. I. Zwebek ◽  
P. Pilidis

This paper presents an investigation of the degradation effects that gas and steam turbine cycles components have on combined cycle (CCGT) power plant performance. Gas turbine component degradation effects were assessed with TurboMatch, the Cranfield Gas Turbine simulation code. A new code was developed to assess bottoming cycle performance deterioration. The two codes were then joined to simulate the combined cycle performance deterioration as a whole unit. Areas examined were gas turbine compressor and turbine degradation, HRSG degradation, steam turbine degradation, condenser degradation, and increased gas turbine back pressure due to HRSG degradation. The procedure, assumptions made, and the results obtained are presented and discussed. The parameters that appear to have the greatest influence on degradation are the effects on the gas generator.


Author(s):  
Clayton M. Grondahl ◽  
Toshiaki Tsuchiya

The introduction of a ceramic gas turbine component in commercial power generation service will require significant effort. A careful assessment of the power plant performance benefit achievable from the use of ceramic components is necessary to rationalize the priority of this development compared to other alternatives. This paper overviews a study in which the performance benefit from ceramic components was evaluated for an MS9001FA gas turbine in a combined cycle power plant configuration. The study was performed with guidelines of maintaining constant compressor inlet airflow and turbine exit NOx emissions, effectively setting the combustion reaction zone temperature. Cooling flow estimates were calculated to maintain standard design life expectancy of all components. Monolithic silicon nitride ceramic was considered for application to the transition piece, stage one and two buckets, nozzles and shrouds. Performance benefit was calculated both for ceramic properties at 1093C (2200F) and for the more optimistic 1315C (2400F) oxidatian limit of the ceramic. Hybrid ceramic-metal components were evaluated in the less optimistic case.


Author(s):  
Xiaomo Jiang ◽  
Eduardo Mendoza ◽  
TsungPo Lin

Condition monitoring and diagnostics of a combined cycle gas turbine power plant has become an important tool to improve its availability, reliability, and performance. However, there are two major challenges in the diagnostics of performance degradation and anomaly in a single shaft combined cycle power plant. First, since the gas turbine and steam turbine in such a plant share a common generator, each turbine’s contribution to the total plant power output is not directly measured, but must be accurately estimated to identify the possible causes of plant level degradation. Second, multivariate operational data instrumented from a power plant need to be used in the plant model calibration, power splitting and degradation diagnostics. Sensor data always contains some degree of uncertainty. This adds to the difficulty of both estimation of gas turbine to steam turbine power split and degradation diagnostics. This paper presents an integrated probabilistic methodology for accurate power splitting and the degradation diagnostics of a single shaft combined cycle plant, accounting for uncertainties in the measured data. The method integrates the Bayesian inference approach, thermodynamic physics modeling, and sensed operational data seamlessly. The physics-based thermodynamic heat balance model is first established to model the power plant components and their thermodynamic relationships. The model is calibrated to model the plant performance at the design conditions of its main components. The calibrated model is then employed to simulate the plant performance at various operating conditions. A Bayesian inference method is next developed to determine the power split between the gas turbine and the steam turbine by comparing the measured and expected power outputs at different operation conditions, considering uncertainties in multiple measured variables. The calibrated model and calculated power split are further applied to pinpoint the possible causes at individual components resulting in the plant level degradation. The proposed methodology is demonstrated using operational data from a real-world single shaft combined cycle power plant with a known degradation issue. This study provides an effective probabilistic methodology to accurately split the power for degradation diagnostics of a single shaft combined cycle plant, addressing the uncertainties in multiple measured variables.


2013 ◽  
Author(s):  
Jingjin Ji ◽  
Bo Sun ◽  
Dequan Zuo ◽  
Lei He

At the present time, with the ever-increasing energy price, gas steam combined-cycle power plant is well received and favored by Chinese local investors due to its quickly-start and stop, high operational flexibility, high thermal efficiency, clean exhaust flue gas, short construction period characteristics. Recent researches make many efforts on the optimization of gas turbine intake system, main equipment parameters matching, and cold side of steam turbine to increase the overall performance of combined cycle. In the paper, we focused on a kind of triple-pressure reheat combined cycle equipped with a state of the art gas turbine, which is gradually entering Chinese market. An accurate overall combined cycle model was built up for the purpose of increasing the efficiency by means of steam parameters optimization. The influence of steam pressures and temperatures of each sections, feed-water regenerative heating and fuel preheating on combined cycle performance are evaluated with the model, the restriction factors such as temperature difference of heat recovery steam generator (HRSG) and steam turbine structure design were also considered. A set of optimum parameters are obtained for combined cycle equipped with a state of the art gas turbine by using the proposed method on enhancing combined cycle performance equipped with a certain type of gas turbine.


2000 ◽  
Vol 123 (3) ◽  
pp. 513-519 ◽  
Author(s):  
C. M. Grondahl ◽  
T. Tsuchiya

The introduction of a ceramic gas turbine component in commercial power generation service will require significant effort. A careful assessment of the power plant performance benefit achievable from the use of ceramic components is necessary to rationalize the priority of this development compared to other alternatives. This paper overviews a study in which the performance benefit from ceramic components was evaluated for an MS9001FA gas turbine in a combined cycle power plant configuration. The study was performed with guidelines of maintaining constant compressor inlet airflow and turbine exit NOx emissions, effectively setting the combustion reaction zone temperature. Cooling flow estimates were calculated to maintain standard design life expectancy of all components. Monolithic silicon nitride ceramic was considered for application to the transition piece, stage one and two buckets, nozzles and shrouds. Performance benefit was calculated both for ceramic properties at 1093°C (2200°F) and for the more optimistic 1315°C (2400°F) oxidation limit of the ceramic. Hybrid ceramic-metal components were evaluated in the less optimistic case.


2003 ◽  
Vol 125 (3) ◽  
pp. 658-663 ◽  
Author(s):  
A. Zwebek ◽  
P. Pilidis

This is the second paper exploring the effects of the degradation of different components on combined cycle gas turbine (CCGT) plant performance. This paper investigates the effects of degraded steam path components of steam turbine (bottoming) cycle have on CCGT power plant performance. Areas looked at were, steam turbine fouling, steam turbine erosion, heat recovery steam generator degradation (scaling and/or ashes deposition), and condenser degradation. The effect of gas turbine back-pressure on plant performance due to HRSG degradation is also discussed. A general simulation FORTRAN code was developed for the purpose of this study. This program can calculate the CCGT plant design point performance, off-design plant performance, and plant deterioration performance. The results obtained are presented in a graphical form and discussed.


Author(s):  
A. Zwebek ◽  
P. Pilidis

This is the second paper exploring the effects of the degradation of different components on Combined Cycle Gas Turbine (CCGT) plant performance. This paper investigates the effects of degraded steam path components of steam turbine (bottoming) cycle have on CCGT power plant performance. Areas looked at were, steam turbine fouling, steam turbine erosion, heat recovery steam generator degradation (scaling and/or ashes deposition), and condenser degradation. The effect of gas turbine back-pressure on plant performance due to HRSG degradation is also discussed. A general simulation Fortran code was developed for the purpose of this study. This program can calculate the CCGT plant design point performance, off-design plant performance, and plant deterioration performance. The results obtained are presented in a graphical form and discussed.


Author(s):  
Toru Takahashi ◽  
Eiichi Koda ◽  
Yoshinobu Nakao

Recently, it is more necessary to maintain or improve the thermal efficiency of actual thermal power plants to reduce CO2 emission and energy consumption in the world, and it is also important to reduce the maintenance cost of commercial thermal power plants. Thus, it is crucial to investigate power plant performance deterioration factors and solve problems related to these factors promptly when the thermal efficiency decreases. However, it is difficult to understand the internal state of power plants sufficiently and to determine power plant performance deterioration factors only from operation data because actual thermal plants are composed of many components and are very complex systems. In particular, it is more difficult to understand performance deterioration in gas turbine combined cycle (GTCC) power plants than in steam power plants because the performance changes markedly in GTCC power plants depending on atmospheric conditions (temperature, pressure, humidity). In other words, when thermal efficiency changes, it is difficult to determine whether the cause is the change in external factors or that in the performance of the component. Therefore, we develop a method based on heat balance analysis to calculate the immeasurable quantity of state and the efficiency of each component in GTCC power plants, and to correct the performance of each component in a plant to a standard state using the performance function obtained from long-term operation data. Through the method, the analysis of the effects of deterioration factors on thermal efficiency becomes possible, and the performance of a plant can be simulated when the operation conditions are changed. Thus, we can determine the main factor that affects thermal efficiency using our method.


Author(s):  
B. Chudnovsky ◽  
L. Levin ◽  
A. Talanker ◽  
V. Mankovsky ◽  
A. Kunin

Diagnostics of large size combined-cycle power plant components (such as: Gas Turbine, HRSG, Steam Turbine and Condenser) plays a significant role in improving power plant performance, availability, reliability and maintenance scheduling. In order to prevent various faults in cycle operation and as a result a reliability reduction, special monitoring and diagnostic techniques is required, for engineering analysis and utility production management. In this sense an on-line supervision system has developed and implemented for 370 MW combined-cycle. The advanced diagnostic methodology is based on a comparison between actual and target conditions. The actual conditions are calculated using data set acquired continuously from the power plant acquisition system. The target conditions are calculated either as a defined actual best operation (Manufacturer heat balances) or by means of a physical model that reproduces boiler and plant performance at off-design. Both sets of data are then compared to find the reason of performance deviation and then used to monitor plant degradation, to support plant maintenance and to assist on-line troubleshooting. The performance calculation module provides a complete Gas Turbine, HRSG and Steam Turbine island heat balance and operating parameters. This paper describes a study where an on-line performance monitoring tool was employed for continuously evaluating power plant performance. The methodology developed and summarized herein has been successfully applied to large size 360–370 MW combined cycles based on GE and Siemens Gas Turbines, showing good capabilities in estimating the degradation of the main equipment during plant lifetime. Consequently, it is a useful tool for power plant operation and maintenance.


Author(s):  
Wancai Liu ◽  
Hui Zhang

Gas turbine is widely applied in power-generation field, especially combined gas-steam cycle. In this paper, the new scheme of steam turbine driving compressor is investigated aiming at the gas-steam combined cycle power plant. Under calculating the thermodynamic process, the new scheme is compared with the scheme of conventional gas-steam combined cycle, pointing its main merits and shortcomings. At the same time, two improved schemes of steam turbine driving compressor are discussed.


Sign in / Sign up

Export Citation Format

Share Document