Gas Turbine Intake Systems: High Velocity Filtration for Marine GT Installations — Part 2

Author(s):  
S. D. Hiner ◽  
R. K. Mudge

Following the development of a high velocity spray eliminator system for marine gas turbines, a sea trial has been completed on board a Royal Navy vessel, for back to back comparison with a unit of conventional design. This paper, will give a brief overview of the trial fit to HMS Coventry. It will then continue by presenting in detail the data obtained throughout the trial and showing the resulting comparisons between the new high velocity and conventional designs. The initial and final inspections of both engines will be presented and the appraisal by Rolls Royce, the engine design authority, will be discussed. Conclusions will be drawn detailing the suitability of the new high velocity design for use onboard RN vessels, to protect their gas turbine intakes. Design parameters for the intakes of the WR21 will be proposed to demonstrate the system’s potential benefits.

Author(s):  
R. K. Mudge ◽  
S. D. Hiner

The Royal Navy (RN) has operated marinised industrial and aero-derivative propulsion gas turbines since the late 1940’s. In order to safeguard the gas turbines (principally from foreign object damage (FOD) and salt ingestion) the RN places a high degree of importance on the gas turbine intake system, a principal element within which is the intake filtration equipment. Since the introduction of marine gas turbines the RN have witnessed and participated in the development of intake filtration systems from knitmesh filters to highly efficient 3 stage (vane- coalescer-vane) separators (spray eliminators). The requirements for RN gas turbine intake systems are described in Naval Engineering Standard (NES 312), and have been brought about by long standing operational experience of these systems and commercial best practice. This paper will briefly outline the RN design criteria for gas turbine intake systems and how this has been modified by field experience. It will then go on to look at intake separators, giving their design criteria and describe from inception, a study into the possible adoption of next generation high velocity spray eliminators describing initial specification, the product design process and development testing. The potential benefits afforded by such a high velocity system will also be discussed. In addition the paper will describe the initial fit of a trial unit onto HMS Coventry, for back to back testing with a unit of conventional design. It is intended to present Part 2 of this paper at ASME 2002 Amsterdam, which will contain a précis of the design, presentation of the data from the sea trial and the results and conclusions from the engine inspections, including an assessment by Rolls Royce the engine Design Authority. At this time the sutability of the equipment for the intakes of the WR21 will be considered.


Author(s):  
Tingting Wei ◽  
Dengji Zhou ◽  
Jinwei Chen ◽  
Yaoxin Cui ◽  
Huisheng Zhang

Since the late 1930s, gas turbine has begun to develop rapidly. To improve the economic and safety of gas turbine, new types were generated frequently by Original Equipment Manufacture (OEM). In this paper, a hybrid GRA-SVM prediction model is established to predict the main design parameters of new type gas turbines, based on the combination of Grey Relational Analysis (GRA) and Support Vector Machine (SVM). The parameters are classified into two types, system performance parameters reflecting market demands and technology development, and component performance parameters reflecting technology development and coupling connections. The regularity based on GRA determines the prediction order, then new type gas turbine parameters can be predicted with known system parameters. The model is verified by the application to SGT600. In this way, the evolution rule can be obtained with the development of gas turbine technology, and the improvement potential of several components can be predicted which will provide supports for overall performance design.


Author(s):  
G. K. Conkol ◽  
T. Singh

As vehicles evolve through the concept phase, a wide variety of engines are usually considered. For long-life vehicles such as heavy armored tracked vehicles, gas turbines have been favored because of their weight and volume characteristics at high hp levels (1500 to 2000 hp). Many existing gas turbine engines, however, are undesirable for vehicular use because their original design philosophy was aircraft oriented. In a ground vehicle, mass flow and expense are only two areas in which these engines differ greatly. Because the designer generally is not given the freedom to design an engine from scratch, he must evaluate modifications of the basic Brayton cycle. In this study, various cycles are evaluated by using a design point program in order to optimize design parameters and to recommend a cycle for heavy vehicular use.


Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

In recent years closed loop supercritical carbon dioxide Brayton cycles have drawn the attention of many researchers as they are characterized by a higher theoretic efficiency and smaller turbomachinery size compared to the conventional steam Rankine cycle for power generation. Currently, first prototypes of this emerging technology are under development and thus small scale sCO2 turbomachinery needs to be developed. However, the design of sCO2 turbines faces several new challenges, such as the very high rotational speed and the high power density. Thus, the eligibility of well-established radial inflow gas turbine design principles has to be reviewed regarding their suitability for sCO2 turbines. Therefore, this work reviews different suggestion for optimum velocity ratios for gas turbines and aims to re-establish it for sCO2 turbines. A mean line design procedure is developed to obtain the geometric dimensions for small scale sCO2 radial inflow turbines. By varying the specific speed and the velocity ratio, different turbine configurations are set up. They are compared numerically by means of CFD analysis to conclude on optimum design parameters with regard to maximum total-to-static efficiency. Six sets of simulations with different specific speeds between 0.15 and 0.52 are set up. Higher specific speeds could not be analyzed, as they require very high rotational speeds (more than 140k RPM) for small scale sCO2 turbines (up to 150kWe). For each set of simulations, the velocity ratio that effectuates maximum efficiency is identified and compared to the optimum parameters recommended for radial inflow turbines using subcritical air as the working fluid. It is found that the values for optimum velocity ratios suggested by Rohlik (1968) are rather far away from the optimum values indicated by the conducted simulations. However, the optimum values suggested by Aungier (2005), although also established for subcritical gas turbines, show an approximate agreement with the simulation results for sCO2 turbines. Though, this agreement should be studied for a wider range of specific speeds and a finer resolution of velocity ratios. Furthermore, for high specific speeds in combination with high velocity ratios, the pressure drop of the designed turbines is too high, so that the outlet pressure is beyond the critical point. For low specific speeds in combination with low velocity ratios, the power output of the designed turbines becomes very small. Geometrically, turbines with low specific speeds and high velocity ratios are characterized by very small blade heights, turbines with high specific speeds and small velocity ratios by very small diameters.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Bruce D. Thompson ◽  
John J. Hartranft ◽  
Dan Groghan

Abstract When the concept of aircraft derivative marine gas turbines were originally proposed, one of the selling points was the engine was going to be easy to remove and replace thereby minimizing the operational impact on the ship. Anticipated Mean Time Between Removal (MTBR) of these engines was expected to be approximately 3000 hours, due mostly to turbine corrosion damage. This drove the design and construction of elaborate removal routes into the engine intakes; the expected time to remove and replace the engine was expected to be less than five days. However, when the first USN gas turbine destroyers started operating, it was discovered that turbine corrosion damage was not the problem that drove engine maintenance. The issues that drove engine maintenance were the accessories, the compressor, combustors and engine vibration. Turbine corrosion was discovered to be a longer term affect. This was primarily due to the turbine blade and vane coatings used and intake air filtration. This paper discusses how engine design, tooling development, maintenance procedure development and engine design improvements all contributed to extending the MTBR of USN propulsion and electrical power generation gas turbines on the DD 963, CG 47, DDG 51 and FFG 7 classes to greater than 20,000 hours. The ability to remove the gas turbine rapidly or in most cases repair the engine in-place has given the USN great maintenance flexibility, been very cost effective and not impacted operational readiness.


Author(s):  
Sepehr Sanaye ◽  
Salahadin Hosseini

A novel procedure for finding the optimum values of design parameters of industrial twin-shaft gas turbines at various ambient temperatures is presented here. This paper focuses on being off design due to various ambient temperatures. The gas turbine modeling is performed by applying compressor and turbine characteristic maps and using thermodynamic matching method. The gas turbine power output is selected as an objective function in optimization procedure with genetic algorithm. Design parameters are compressor inlet guide vane angle, turbine exit temperature, and power turbine inlet nozzle guide vane angle. The novel constrains in optimization are compressor surge margin and turbine blade life cycle. A trained neural network is used for life cycle estimation of high pressure (gas generator) turbine blades. Results for optimum values for nozzle guide vane/inlet guide vane (23°/27°–27°/6°) in ambient temperature range of 25–45 ℃ provided higher net power output (3–4.3%) and more secured compressor surge margin in comparison with that for gas turbines control by turbine exit temperature. Gas turbines thermal efficiency also increased from 0.09 to 0.34% (while the gas generator turbine first rotor blade creep life cycle was kept almost constant about 40,000 h). Meanwhile, the averaged values for turbine exit temperature/turbine inlet temperature changed from 831.2/1475 to 823/1471°K, respectively, which shows about 1% decrease in turbine exit temperature and 0.3% decrease in turbine inlet temperature.


1970 ◽  
Author(s):  
N. K. H. Scholz

The effect of the main design parameters of the aero gas turbine engine cycle, namely combustion temperature and compression pressure ratio, on the specific performance values is discussed. The resulting development trend has been of essential influence on the technology. Relevant approaches are outlined. The efforts relating to weight and manufacturing expense are also indicated. In the design of aero gas turbine engines increasing consideration is given to the specific flight mission requirements, such as for instance by the introduction of the by-pass principle. Therefore direct application of aero gas turbine engines for ship propulsion without considerable modifications, as has been practiced in the past, is not considered very promising for the future. Nevertheless, there are possibilities to take advantage of aero gas turbine engine developments for ship propulsion systems. Appropriate approaches are discussed. With the experience obtained from aero gas turbine engines that will enter service in the early seventies it should be possible to develop marine gas turbine engines achieving consumptions and lifes that are competitive with those of advanced diesel units.


Author(s):  
P. W. W. Ridley

The Royal Navy has now over 20 operational gas turbine powered warships, the majority with a two Olympus/two Tyne COGOG main propulsion fit. Many of these were deployed in the South Atlantic during the Falklands crisis in the Spring of 1982. The paper analyses the lessons learnt during 4 months of strenuous operations in a hostile environment.


Author(s):  
Ian Timbrell ◽  
Howard Startin

Marine Propulsion Systems Integrated Project Team (MPSIPT), part of the UK’s Defence Logistics Organisation (DLO), has traditionally provided gas turbine life cycle management to a collaboration of four European navies operating the Rolls Royce Olympus, Tyne and Spey marine gas turbines. With the drive towards the need to deliver greater efficiencies, a shrinking supplier base and in keeping with DLO’s Strategic Plan to transform in-service support arrangements, MPSIPT explored ways by which they could move from a provider to intelligent decider role. This transformation was realised in the form of a Total Care Package (TCP), introduced in April 2005, whereby Rolls Royce has taken responsibility for the support of Olympus and Tyne marine gas turbines. The issues raised should be of interest to Navies and other organisations facing similar challenges in gas turbine support. This paper gives a brief history behind how gas turbine life cycle management has been provided to the Royal Navy in the past, before concentrating on the reasons behind and the practical issues raised by our move to the TCP arrangement. The paper sets out the philosophy behind the DLO’s Strategic Plan, what that means in practical terms, how it has been applied for gas turbine support and the implications for the future. It explains how TCP has been approached in partnership with Rolls Royce, describes the issues that were faced, what the benefits are, what it means for the front line and our partners and how the contract is being managed. It concludes by identifying the lessons from the first year of operation of the TCP contract.


Sign in / Sign up

Export Citation Format

Share Document