Tip Leakage/Main Flow Interactions in Multi-Stage HP Turbines With Short-Height Blading

Author(s):  
Piotr Lampart ◽  
Sergey Yershov ◽  
Andrey Rusanov ◽  
Mariusz Szymaniak

Interaction of the main flow with tip leakage over shrouded rotor blades in a multi-stage turbine is studied numerically. The flow in blade-to-blade channels is computed with the aid of a 3D Navier-Stokes solver FlowER with the Menter SST turbulence model. In this paper, the labyrinth seals are not computed but the numerical scheme is modified to include the source/sink-type boundary conditions at places at the endwalls referring to design locations of injection of leakage flows into, or their extraction from, the blade-to-blade passage. Without considering complete labyrinth seal geometries, the tip leakage jet is represented by its flow rate and direction at re-entry to the blade-to-blade passage, as if referring to the performance of a range of different labyrinth seal arrangements. The effect of direction of tip leakage re-entry on the downstream flow and efficiency of the turbine stage (stage group) is studied. The calculation method is validated on a model air stator/rotor turbine.

Author(s):  
Jan E. Anker ◽  
Ju¨rgen F. Mayer

This paper presents the simulation of the flow in a 1.5 stage low-speed axial turbine with shrouded rotor blades and focuses on the interaction of the labyrinth seal leakage flow with the main flow. The presented results were obtained using the Navier-Stokes code ITSM3D developed at University of Stuttgart. A comparison of the computational results with experimental data of this test case gained at Ruhr-Universita¨t Bochum verifies that the flow solver is capable of reproducing the leakage flow effects to a sufficient extent. The computational results are used to examine the influence of the leakage flow on the flow field of the turbine. By varying the clearance height of the labyrinth in the simulations, the impact of the re-entering leakage flow on the main flow is studied. As demonstrated in this paper, leakage flow not only introduces mixing losses but can also dominate the secondary flow and induce severe losses. In agreement with the experimental data the computational results show that at realistic clearance heights the leakage flow gives rise to negative incidence over a considerable part of the downstream stator which causes the flow to separate.


Author(s):  
Zainab J Saleh ◽  
Eldad J Avital ◽  
Theodosios Korakianitis

Increasing the gas temperature at the inlet to the high pressure turbine of gas turbine engines is known as a proven method to increase the efficiency of these engines. However, this will expose the blades’ surface to very high heat load and thermal damages. In the case of the un-shrouded turbine blades, the blade tip will be exposed to a significant thermal load due to the developed leakage flows in the tip gap, this leads to in-service burnout which degrades the blade tip and shortens its operational life. This paper studies the in-service burnout effect of the transonic tip flows over a cavity tip which is a configuration commonly used to reduce the tip leakage flows. This investigation is carried out experimentally within a transonic wind tunnel and computationally using steady and unsteady Reynolds Averaged Navier Stokes approaches. Various flow measurements are established and different flow behaviour including separation bubbles, shockwave development and distinct flow interactions are captured and discussed. It is found that when the tip is exposed to the in-service burnout, leakage flow behaves in a significantly different way. In addition, the effective tip gap becomes much larger and allows higher leakage mass flow rate in comparison to the sharp-edge tip (i.e. a tip at the beginning of its operational life). The tip leakage losses are found much higher for the round-edge cavity tip (i.e. a tip exposed to burn-out effect). Experimental and computational flow visualisations, surface pressure measurements and discharge coefficient variation are given and analysed for several pressure ratios across the tip gap.


2003 ◽  
Vol 127 (4) ◽  
pp. 649-658 ◽  
Author(s):  
Jochen Gier ◽  
Bertram Stubert ◽  
Bernard Brouillet ◽  
Laurent de Vito

Endwall losses significantly contribute to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratios are increased. In turbines with shrouded airfoils a large portion of these losses are generated by the leakage flow across the shroud clearance. Generally the related losses can be grouped into losses of the leakage flow itself and losses caused by the interaction with the main flow in subsequent airfoil rows. In order to reduce the impact of the leakage flow and shroud design related losses a thorough understanding of the leakage losses and especially of the losses connected to enhancing secondary flows and other main flow interactions has to be understood. Therefore, a three stage LP turbine typical for jet engines is being investigated. For the three-stage test turbine 3D Navier-Stokes computations are performed simulating the turbine including the entire shroud cavity geometry in comparison with computations in the ideal flow path. Numerical results compare favorably against measurements carried out at the high altitude test facility at Stuttgart University. The differences of the simulations with and without shroud cavities are analyzed for several points of operation and a very detailed quantitative loss breakdown is presented.


Author(s):  
Bob Mischo ◽  
Beat Ribi ◽  
Christof Seebass-Linggi ◽  
Sebastiano Mauri

The focus of this paper lies on the leakage flow across the shroud of a centrifugal compressor impeller. It is common practice to use shrouded impellers in multi stage compressors featuring a single shaft. The rotating impeller then has to be sealed against the higher pressure in the downstream diffuser by means of labyrinths. The relative amount of leakage is higher for stages designed for low flow, meaning that the associated losses gain in relevance. In addition to this loss source, the injection of the leakage flow has a serious influence on the main flow in a region where it is prone to separation, i.e. at the suction side of the impeller blades close to the shroud, where the highest relative velocities are found. The present paper discusses the numerical results of several geometrical arrangements where the leakage flow was mixed with the main flow in different ways. The distance between the location of injection and the leading edge of the impeller as well as the orientation of the injected flow showed a distinct influence on the performance of the entire stage, mainly on stability.


Author(s):  
Sheryl M. Grace ◽  
Douglas L. Sondak ◽  
Daniel J. Dorney ◽  
Michaela Logue

In this study, a 3-D, unsteady, Reynolds-averaged Navier-Stokes (RANS) CFD code coupled to an acoustic calculation is used to predict the contribution of the exit guide vanes to tonal fan noise downstream. The configuration investigated is that corresponding to the NASA Source Diagnostic Test (SDT) 22-in fan rig. One configuration from the SDT matrix is considered here: the approach condition, and outlet guide vane count designed for cut-off of the blade passage frequency. In this chosen configuration, there are 22 rotor blades and 54 stator blades. The stators are located 2.5 tip chords downstream of the rotor trailing edge. The RANS computations are used to obtain the spectra of the unsteady surface pressure on the exit guide vanes. The surface pressure at the blade passage frequency and its second harmonic are then integrated together with the Green’s function for an annular duct to obtain the pressure at locations in the duct. Comparison of the computed sound power level at the exhaust plane with experiment show good agreement at the cut-on circumferential mode. The results from this investigation validate the use of the CFD code along with the acoustic model for downstream fan noise predictions. This validation enables future investigations such as the effect of duct variation on the exhaust tonal power level and the validity of using this method for predicting broadband noise levels.


Author(s):  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost ◽  
A. Giboni ◽  
K. Wolter

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with shrouded rotor blades and a straight through labyrinth seal. The paper focuses on the time dependent influence of the leakage flow on the downstream stator flow field. The experimental program consists of time accurate measurements of the three-dimensional properties of the flow through ten different measurement planes in the stator passage. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes extend from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 4,800 measurement points and 20 time steps per blade passing period. The time-accurate experimental data of the ten measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the flow phenomena. Additionally numerical data behind the rotor is used to connect the entry of the leakage flow with the flow phenomena in the downstream stator passage and behind it. The leakage flow causes strong fluctuations of the flow in the downstream stator. Above all, the high number of measurement points reveals both the secondary flow phenomena and the vortex structures within the blade passage. The time-dependence of both the position and the intensity of the vortices influenced by the leakage flow is shown. The paper shows that even at realistic clearance heights the leakage flow influences considerable parts of the downstream stator and gives rise to negative incidence and flow separation. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbines.


Author(s):  
A. Giboni ◽  
K. Wolter ◽  
J. R. Menter ◽  
H. Pfost

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with a straight labyrinth seal on the rotor shroud. The paper focuses on the time dependent interaction between the leakage flow and the main flow. The experimental program consists of time accurate measurements of the three-dimensional properties of the main flow. The region of the entering leakage flow downstream of the rotor trailing edge was of special interest. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes behind the three blade rows extend over one pitch from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 1,008 points per measurement plane. The time-accurate experimental data of the three measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the mixing process. As demonstrated in this paper, the leakage flow causes strong fluctuations of the secondary flow behind the rotor and the second stator. Above all, the high number of numerical grid points reveals both the secondary flow phenomena and the vortex structures of the mixing zone. The time-dependence of both position and intensity of the vortices is shown. The development of the important leakage vortex is illustrated and explained. The paper shows that even at realistic clearance heights the leakage flow gives rise to negative incidence of considerable parts of the downstream stator which causes the flow to separate. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbomachinery.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
C. De Maesschalck ◽  
S. Lavagnoli ◽  
G. Paniagua ◽  
T. Verstraete ◽  
R. Olive ◽  
...  

Superior rotor tip geometries possess the potential to simultaneously mitigate aerodynamic losses and severe thermal loads onto the rotor overtip region. However, classical design strategies are usually constrained to a specific type of geometry, narrowing the spread of shape topologies considered during the design phase. The current paper presents two novel multi-objective optimization methodologies that enable the exploration of a broad range of distinct tip configurations for unshrouded rotor blades. The first methodology is a shape optimization process that creates a fully carved blade tip shape defined through a Bezier surface controlled by 40 parameters. Combined with a differential evolution (DE) optimization strategy, this approach is applied to a rotor blade for two tip gap sizes: 0.85% (tight) and 1.38% (design) of the blade span. The second methodology is based on a topology optimization process that targets the creation of arbitrary tip shapes comprising one or multiple rims with a fixed height. The tip section of the blade has been divided into more than 200 separate zones, where each zone can be either part of an upstanding rim or part of the cavity floor. This methodology was tested with a level-set approach in combination with a DE optimizer and coupled to an optimization routine based on genetic algorithms (GAs). The current study was carried out on a modern high-pressure turbine operating at engine-like Reynolds and high subsonic outlet Mach numbers. A fully hexahedral unstructured mesh was used to discretize the fluid domain. The aerothermal performance of each tip profile was evaluated accurately through Reynolds-averaged Navier–Stokes (RANS) simulations adopting the shear-stress transport (SST) turbulence model. Multi-objective optimizations were set for both design strategies that target higher aerodynamic rotor efficiencies and simultaneous minimization of the heat load. This paper illustrates a wide variety of profiles obtained throughout the optimization and compares the performance of the different strategies. The research shows the potential of such novel methodologies to reach new unexplored types of blade tip designs with enhanced aerothermal performances.


1998 ◽  
Author(s):  
C. Bonhommet-Chabanel ◽  
G. A. Gerolymos

This paper presents both experimental and numerical results of tip leakage effects in a High Speed Annular Cascade. The influence of the clearance size has been investigated. For validation purposes and a better understanding of the 3-D phenomena, a comparison of the measurements with three-dimensional Navier-Stokes computations using a k-ε closure with a low-Reynolds approach has been performed. The high speed annular cascade facility has been specifically designed for studying tip leakage flows at the rear of high pressure compressors. In the vicinity of the clearance, the inlet swirl angle, created by a scroll, is of 60° from the axial direction and the Mach number is about 0.60. The blades are cantilevered (fixed on the casing with a clearance gap at the rotating inner wall). In order to obtain a picture of the flow field as complete as possible, different kinds of measurements have been used. 3D velocity measurements within the blade passages have been performed by means of a 3-D Laser Doppler Anemometer system. Furthermore, a five-hole probe with long stem was also used in the blade passage. The experimental data are quite detailed and self-consistent. A leakage vortex can clearly be identified and, within the blade passage, seems to be responsible for a region of overturning above it. The clearance size has a direct impact on the inception point of the phenomena and on the direction and strength of the leakage vortex. The calculation was found to reproduce the same trends as the experiment and give good quantitative comparisons, although it overestimates the leakage effect at blade exit.


Author(s):  
A. Pfau ◽  
J. Schlienger ◽  
D. Rusch ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper focuses on the flow within the inlet cavity of a turbine rotor tip labyrinth seal of a 2 stage axial research turbine. Highly resolved, steady and unsteady 3-dimensional flow data are presented. The probes used here are a miniature 5 hole probe of 0.9mm head diameter and the novel virtual four sensor fast response aerodynamic probe (FRAP) with a head diameter of 0.84mm. The cavity flow itself is not only a loss producing area due to mixing and vortex stretching, it also adversely affects the following rotor passage through the fluid that is spilled into the main flow. The associated fluctuating mass flow has a relatively low total pressure and results in a negative incidence to the rotor tip blade profile section. The dominating kinematic flow feature in the region between cavity and main flow is a toroidal vortex, which is swirling at high circumferential velocity. It is fed by strong shear and end wall fluid from the pressure side of the stator passage. The static pressure field interaction between the moving rotor leading edges and the stator trailing edges is one driving force of the cavity flow. It forces the toroidal vortex to be stretched in space and time. A comprehensive flow model including the drivers of this toroidal vortex is proposed. This labyrinth seal configuration results in about 1.6% turbine efficiency reduction. This is the first in a series of papers focussing on turbine loss mechanisms in shrouded axial turbines. Additional measurements have been made with variations in seal clearance gap. Initial indications show that variation in the gap has a major effect on flow structures and turbine loss.


Sign in / Sign up

Export Citation Format

Share Document