Thermodynamic Analysis of Intercooled Gas-Steam Combined and Steam Injected Gas Turbine Power Plants

Author(s):  
R. Yadav ◽  
Sunil Kumar Jumhare ◽  
Pradeep Kumar ◽  
Samir Saraswati

The current emphasis on the development of gas turbine related power plants such as combined and steam injected is on increasing the plant efficiency and specific work while minimizing the cost of power production per kW and emission. The present work deals with the thermodynamic analysis of intercooled (both surface and evaporative) gas/steam combined and steam injected cycle power plants. The intercooling has a beneficial effect on both plant efficiency and specific work if the optimum intercooling pressure is chosen between 3 and 4. The evaporative intercooler is superior to surface type with reference to plant efficiency and specific work.

Author(s):  
Gennadii Liubchik ◽  
◽  
Nataliia Fialko ◽  
Aboubakr Regragui ◽  
Julii Sherenkovskii ◽  
...  

The article presents the enthalpy-entropy methodology of thermodynamic analysis of gas turbine and combined power plants on their basis, the results of testing the method on a real technical facility, proving its high efficiency.


Author(s):  
Gennadii Liubchik ◽  
◽  
Nataliia Fialko ◽  
Aboubakr Regragui ◽  
Nataliia Meranova ◽  
...  

The basic positions of the enthalpy-entropy methodology of thermodynamic modeling of processes in gas turbine units (GTUs) and combined power plants on basis GTUs are presented. The main requirements and conditions of this methodology are formulated, they allows the construction of a sequential (without iterations) algorithm for the computational diagnostics of the thermodynamic parameters of the GTU cycle, which includes the calculation blocks for the compressor, combustion chamber, turbine, and exhaust tube of the GTU. The obtained regression equations are presented. The use of these equations simplifies of the procedure for evaluating the thermodynamic parameters of the components at the nodal points of the cycle. The advantages of the proposed methodology in comparison with the traditional thermal-entropy methodology are indicated.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


2014 ◽  
Vol 35 (4) ◽  
pp. 83-95 ◽  
Author(s):  
Daniel Czaja ◽  
Tadeusz Chmielnak ◽  
Sebastian Lepszy

Abstract A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10


Author(s):  
Joe D. Craig ◽  
Carol R. Purvis

A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.


2018 ◽  
Author(s):  
Waleed El-Damaty ◽  
Mohamed Gadalla

For many years, thermodynamic analysis was considered to be the principal tool that is used to predict the performance of a power plant. Recently, the environmental effect and the cost of power plants have been considered as important as the thermodynamic performance in design of power plants. Thus, researchers started to adopt a relevantly new approach called the exergoeconomic analysis which combines the thermodynamic technicalities as well as the economic analysis to design power plants. The exergoeconomic analysis provides crucial information that helps in foreseeing not only the thermodynamic performance but also all economic variables related to power plants. Increasing the efficiency of the power plant has been the major concern in power plants. Thus, the global approach of reaching high turbine inlet temperatures to improve the efficiency of power plants, has exposed the turbine blades to some serious problems. Thereby, cooling the turbine blades has become an important aspect that needs to be taken care of during the power plant operation. In this paper, a cooled gas turbine with intercooler, recuperator and reheater is adopted where it is incorporated with a cooling system. An exergoeconomic analysis accompanied by a sensitivity analysis was performed on the gas turbine cycle to determine the exergo-economic factor and the relative cost difference in addition to study the effect of different variables on the gas turbine thermal and exergetic efficiency, net specific work and the total cost rate. Average cost theory approach was adopted from various thermo-economic methodologies to determine the cost calculation during this investigation. The results showed a reduction in the total coolant mass flow rate in the base case where no cooling systems are integrated from 3.349 kg/s to 3.01 kg/s, 2.995 kg/s and 2.977 kg/s in the case of integrating the cooling systems triple stage Maisotsenko desiccant, triple stage precooling Maisotsenko desiccant and triple stage extra cooling Maisotsenko desiccant, respectively. Accordingly, the thermal efficiency has increased to reach 52.69%, 52.89% and 53.12% by the integration of TS-MD, TS-PMD and TS-EMD cooling systems, respectively.


2011 ◽  
Vol 130-134 ◽  
pp. 3807-3811
Author(s):  
Gang Xu ◽  
Shou Cheng Li ◽  
Xing Yuan ◽  
Yong Ping Yang ◽  
Xiao Na Song

This paper presents the techno-economic performance of 600 MW coal-fired power plant with and without MEA-based CO2 capture process, based on the operating data of an existing power plant. The simulation and analysis are based on ASPEN PLUS, with fully consideration of features of existing coal-fired power plants and the integration of CO2 capture process with steam cycle. The results show that, when adopting CO2 capture process, the plant efficiency will decrease significantly. And the cost for electricity will increase dramatically. Through further system integrated optimization, the efficiency fall from 40.28% to 29.61%, which is still tremendous but obviously better performance than before.


Author(s):  
Allan J. Volponi

Engine diagnostic practices are as old as the gas turbine itself. Monitoring and analysis methods have progressed in sophistication over the past 6 decades as the gas turbine evolved in form and complexity. While much of what will be presented here may equally apply to both stationary power plants and aero-engines, the emphasis will be on aero propulsion. Beginning with primarily empirical methods centering around monitoring the mechanical integrity of the machine, the evolution of engine diagnostics has benefited from advances in sensing, electronic monitoring devices, increased fidelity in engine modeling and analytical methods. The primary motivation in this development is, not surprisingly, cost. The ever increasing cost of fuel, engine prices, spare parts, maintenance and overhaul, all contribute to the cost of an engine over its entire life cycle. Diagnostics can be viewed as a means to mitigate risk in decisions that impact operational integrity. This can have a profound impact on safety, such as In-Flight Shut Downs (IFSD) for aero applications, (outages for land based applications) and economic impact caused by Unscheduled Engine Removals (UERs), part life, maintenance and overhaul and the overall logistics of maintaining an aircraft fleet or power generation plants. This paper will review some of the methods used in the preceding decades to address these issues, their evolution to current practices and some future trends. While several different monitoring and diagnostic systems will be addressed, the emphasis in this paper will be centered on those dealing with the aero-thermodynamic performance of the engine.


2004 ◽  
Vol 126 (4) ◽  
pp. 770-785 ◽  
Author(s):  
Paolo Chiesa ◽  
Ennio Macchi

All major manufacturers of large size gas turbines are developing new techniques aimed at achieving net electric efficiency higher than 60% in combined cycle applications. An essential factor for this goal is the effective cooling of the hottest rows of the gas turbine. The present work investigates three different approaches to this problem: (i) the most conventional open-loop air cooling; (ii) the closed-loop steam cooling for vanes and rotor blades; (iii) the use of two independent closed-loop circuits: steam for stator vanes and air for rotor blades. Reference is made uniquely to large size, single shaft units and performance is estimated through an updated release of the thermodynamic code GS, developed at the Energy Department of Politecnico di Milano. A detailed presentation of the calculation method is given in the paper. Although many aspects (such as reliability, capital cost, environmental issues) which can affect gas turbine design were neglected, thermodynamic analysis showed that efficiency higher than 61% can be achieved in the frame of current, available technology.


2014 ◽  
Author(s):  
Masoud Rokni

Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissions and plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.


Sign in / Sign up

Export Citation Format

Share Document