OH PLIF and Soot Volume Fraction Imaging in the Reaction Zone of a Liquid-Fueled Model Gas-Turbine Combustor

Author(s):  
Terrence R. Meyer ◽  
Sukesh Roy ◽  
Sivaram P. Gogineni ◽  
Vincent M. Belovich ◽  
Edwin Corporan ◽  
...  

Simultaneous measurements of OH planar laser-induced fluorescence (PLIF) and laser-induced incandescence (LII) are used to characterize the flame structure and soot formation process in the reaction zone of a swirl-stabilized, JP-8-fueled model gas-turbine combustor. Studies are performed at atmospheric pressure with heated inlet air and primary-zone equivalence ratios from 0.55 to 1.3. At low equivalence ratios (φ < 0.9), large-scale structures entrain rich pockets of fuel and air deep into the flame layer; at higher equivalence ratios, these pockets grow in size and prominence, escape the OH-oxidation zone, and serve as sites for soot inception. Data are used to visualize soot development as well as to qualitatively track changes in overall soot volume fraction as a function of fuel-air ratio and fuel composition. The utility of the OH-PLIF and LII measurement system for test rig diagnostics is further demonstrated for the study of soot-mitigating additives.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Anandkumar Makwana ◽  
Suresh Iyer ◽  
Milton Linevsky ◽  
Robert Santoro ◽  
Thomas Litzinger ◽  
...  

The objective of this study is to understand the effects of fuel volatility on soot emissions. This effect is investigated in two experimental configurations: a jet flame and a model gas turbine combustor. The jet flame provides information about the effects of fuel on the spatial development of aromatics and soot in an axisymmetric, co-flow, laminar flame. The data from the model gas turbine combustor illustrate the effect of fuel volatility on net soot production under conditions similar to an actual engine at cruise. Two fuels with different boiling points are investigated: n-heptane/n-dodecane mixture and n-hexadecane/n-dodecane mixture. The jet flames are nonpremixed and rich premixed flames in order to have fuel conditions similar to those in the primary zone of an aircraft engine combustor. The results from the jet flames indicate that the peak soot volume fraction produced in the n-hexadecane fuel is slightly higher as compared to the n-heptane fuel for both nonpremixed and premixed flames. Comparison of aromatics and soot volume fraction in nonpremixed and premixed flames shows significant differences in the spatial development of aromatics and soot along the downstream direction. The results from the model combustor indicate that, within experiment uncertainty, the net soot production is similar in both n-heptane and n-hexadecane fuel mixtures. Finally, we draw conclusions about important processes for soot formation in gas turbine combustor and what can be learned from laboratory-scale flames.


Author(s):  
Anandkumar Makwana ◽  
Suresh Iyer ◽  
Milton Linevsky ◽  
Robert Santoro ◽  
Thomas Litzinger ◽  
...  

The objective of this study is to understand the effects of fuel volatility on soot emissions. The effect of fuel volatility on soot is investigated in two experimental configurations: a jet flame and a model gas turbine combustor. The jet flame experiment provides information about the effects of fuel on the spatial development of aromatics and soot in an axisymmetric, co-flow, laminar flame at atmospheric pressure. The data from the model gas turbine combustor illustrate the effect of fuel volatility on net soot production under conditions similar to an actual engine at cruise, operated at 5 atm, an inlet temperature of 560 K, and an inlet global equivalence ratio of 0.9 to 1.8. Two fuels with different boiling points are investigated: n-heptane/n-dodecane mixture and n-hexadecane/n-dodecane mixture. The n-hexadecane has a boiling point of 287° C as compared to 216° C for n-dodecane and 98° C for n-heptane. The jet flames investigated are non-premixed and premixed flames (jet equivalence ratios of 24 and 6) in order to have fuel rich conditions similar to those in the primary zone of an aircraft engine combustor. The results from the jet flames indicate that the peak soot volume fraction produced in the n-hexadecane fuel is slightly higher as compared to the n-heptane fuel for both non-premixed and premixed flames. The comparison of aromatics and soot volume fraction in non-premixed and premixed flames shows significant differences in the spatial development of aromatics and soot along the downstream direction. The results from the model combustor indicate that, within experiment uncertainty, the net soot production is similar in both n-heptane and n-hexadecane fuel mixtures. In comparing the results from these two burner configurations, we draw conclusions about important processes for soot formation in gas turbine combustors and what can be learned from laboratory-scale flames.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


Author(s):  
R. Koch ◽  
S. Wittig ◽  
H.-J. Feld ◽  
H.-J. Mohr

The dispersion quotient method, an optical measuring technique for particles, has been applied to in situ measurements of the soot particle size and density in the secondary zone of a KHD GT-216 gas turbine combustor under operating engine conditions. The optical technique, which has been developed at the Institut of Thermische Strömungsmaschinen, is based on the light extinction at different wavelength by a particle cloud due to absorption and scattering. It is of particular advantage in applications, where particles of small size (d ≤ 1.0μ) and high density are to be investigated. In the present investigation, two idling running conditions of the turbine have been studied: 30.000 rpm and 47.000 rpm. The results show, that the dispersion quotient method is well suited for soot measurements in pressurized flames. In particular, it was found, that the soot particle diameter is not effected by the rotating speed of the turbine. The size of the soot particles was always in the range from 0.1 to 0.3 mircon. The soot volume fraction, however, was found to be strongly influenced by different rotating speeds, with higher rotating speed causing higher volume fraction of soot.


Author(s):  
Andrea Giusti ◽  
Epaminondas Mastorakos ◽  
Christoph Hassa ◽  
Johannes Heinze ◽  
Eggert Magens ◽  
...  

In this work a single sector lean burn model combustor operating in pilot only mode has been investigated using both experiments and computations with the main objective of analyzing the flame structure and soot formation at conditions relevant to aero-engine applications. Numerical simulations were performed using the Large Eddy Simulation (LES) approach and the Conditional Moment Closure (CMC) combustion model with detailed chemistry and a two-equation model for soot. The CMC model is based on the time-resolved solution of the local flame structure and allows to directly take into account the phenomena associated to molecular mixing and turbulent transport which are of great importance for the prediction of emissions. The rig investigated in this work, called Big Optical Single Sector (BOSS) rig, allows to test real scale lean burn injectors. Experiments, performed at elevated pressure and temperature, corresponding to engine conditions at part load, include OH-PLIF and PDA and have been complemented with new LII measurements for soot location. The wide range of measurements available allows a comprehensive analysis of the primary combustion region and can be exploited to further assess and validate the LES/CMC approach to capture the flame behaviour at engine conditions. It is shown that the LES/CMC approach is able to predict the main characteristics of the flame with a good agreement with the experiment in terms of flame shape, spray characteristics and soot location. Finite-rate chemistry effects appear very important in the region very close to the injector exit leading to the lift-off of the flame. Low levels of soot are observed immediately downstream of the injector exit, where a high amount of vaporized fuel is still present. Further downstream, the fuel vapour disappears quite quickly and an extended region characterised by the presence of pyrolysis products and soot precursors is observed. The strong production of soot precursors together with high soot surface growth rates lead to high values of soot volume fraction in locations consistent with the experiment. Soot oxidation is also very important in the downstream region resulting in a decrease of the soot level at the combustor exit. The results show a very promising capability of the LES/CMC approach to capture the main characteristics of the flame, soot formation and location at engine relevant conditions. More advanced soot models will be considered in future work in order to improve the quantitative prediction of the soot level.


Author(s):  
Paul O. Hedman ◽  
Thomas H. Fletcher ◽  
Stewart G. Graham ◽  
G. Wayne Timothy ◽  
Daniel V. Flores ◽  
...  

The objective of this study was to obtain instantaneous planar laser induced fluorescence (PLIF) images of OH in a laboratory-scale, gas-turbine combustor (LSGTC) with a pre-mixed, swirl-stabilized, natural gas flame. Instantaneous PLIF images of OH were obtained at each of four operating conditions (high swirl and medium swirl at fuel equivalence ratios of 0.80 and 0.65). Comparison of the instantaneous images illustrates the stochastic nature of the flame structure. Pixel by pixel statistical analysis of each collection of images allowed both mean and standard deviation images to be generated, and analysis at selected locations has allowed probability density functions to be obtained in various regions of the flame structure. PLIF images of OH, along with visual photographs and video recordings, showed a wide variation in flame structure for the different operating conditions. The variations in flame shapes are primarily a result of the effect of the swirl intensity and fuel equivalence ratio. Changes in the airflow rate over an order of magnitude do not seem to affect the visual flame structure in this experiment. Operation at φ = 0.80 produced the most stable flames with both injectors. The flame with the high swirl injector was more coalesced and closer to the injector than with the medium swirl injector. At φ = 0.65, the flame was quite unstable for both swirl injectors. With the medium swirl injector, the flame would oscillate between two different flame structures, one that was more or less attached to the vortex funnel, and one that was lifted well above the vortex funnel. The MS case at φ = 0.65 was at the very edge of the lean flammability limit, and would on occasion extinguish.


1984 ◽  
Vol 106 (4) ◽  
pp. 789-794 ◽  
Author(s):  
T. T. Bowden ◽  
J. H. Pearson ◽  
R. J. Wetton

The sooting tendencies of various fuel blends containing either single-ring or polycyclic aromatics have been studied in a model gas turbine combustor at a pressure of 1.0 MPa and varying values of air/fuel ratio. Sooting tendencies were determined by flame radiation, exhaust soot, and infra-red absorption measurements. The results of this study have indicated that, even for fuels containing high concentrations of naphthalenes or tetralins (> 10 percent v), fuel total hydrogen content correlates well with fuel sooting tendency. The present results are explained by a hypothesis that assumes that the majority of soot is formed in regions of high temperature, low oxygen content, and low fuel concentration, e.g., the recirculation zone.


Sign in / Sign up

Export Citation Format

Share Document