Unsteady Fluid Structure Interaction in a Turbine Blade

Author(s):  
Rama Subba Reddy Gorla ◽  
Shantaram S. Pai ◽  
Isaiah Blankson ◽  
Srinivas C. Tadepalli ◽  
Sreekantha Reddy Gorla

An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications has been described. Casting the governing equations in a rotating frame enables the freezing of grid motion and results in substantial savings in computer time. Heat transfer to a gas turbine blade was computationally simulated by finite element methods and probabilistically evaluated in view of the several uncertainties in the performance parameters. The interconnection between the CFD code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the turbine blade. Cumulative distribution functions and sensitivity factors were computed for stresses due to the aerodynamic, geometric, material and thermal random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of the appropriate materials to be used and to the identification of both the most critical measurements and parameters.

Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


Author(s):  
Rama S. R. Gorla ◽  
Shantaram S. Pai ◽  
Jeffrey J. Rusick

A combustor liner was computationally simulated and probabilistically evaluated in view of the several uncertainties in the aerodynamic, structural, material and thermal variables that govern the combustor liner. The interconnection between the computational fluid dynamics code and the finite element structural analysis codes was necessary to couple the thermal profiles with structural design. The stresses and their variations were evaluated at critical points on the liner. Cumulative distribution functions and sensitivity factors were computed for stress responses due to the aerodynamic, mechanical and thermal random variables. It was observed that the inlet and exit temperatures have a lot of influence on the hoop stress. For prescribed values of inlet and exit temperatures, the Reynolds number of the flow, coefficient of thermal expansion, gas emissivity and absorptivity and thermal conductivity of the material have about the same impact on the hoop stress. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective.


Author(s):  
Bhogilal M. Patel ◽  
William C. Strack ◽  
Vinod Nagpal ◽  
Shantaram S. Pai ◽  
P. L. N. Murthy

This paper presents an overview of a newly developed code, NESTEM that analyzes structural components subjected to varying thermal and mechanical loads. This program is an enhanced version of NESSUS and has all the capabilities of NESSUS. In addition, it allows one to perform heat transfer analysis. The basic heat transfer variables can be included as random variables along with the mechanical random variables to quantify risk using probabilistic methods and to perform sensitivity analysis. The analysis capabilities of NESTEM have been demonstrated by analyzing a cylindrical combustor liner. This analysis includes evaluating stresses and their variations at critical points on the liner using material properties, pressure loading and basic heat transfer variables as the random variables. The heat transfer variables are convection temperatures, film coefficients, radiation temperatures, emissivity, absorptivity and conductivity. Cumulative distribution functions and sensitivity factors, for stress responses, for mechanical and thermal random variables are calculated. These results can be used to quickly identify the most critical design variables, in order to optimize the design, to make it cost effective.


Author(s):  
Rama S. R. Gorla ◽  
Shantaram S. Pai ◽  
Jeffrey Rusick

The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.


2013 ◽  
Vol 41 (1) ◽  
pp. 60-79 ◽  
Author(s):  
Wei Yintao ◽  
Luo Yiwen ◽  
Miao Yiming ◽  
Chai Delong ◽  
Feng Xijin

ABSTRACT: This article focuses on steel cord deformation and force investigation within heavy-duty radial tires. Typical bending deformation and tension force distributions of steel reinforcement within a truck bus radial (TBR) tire have been obtained, and they provide useful input for the local scale modeling of the steel cord. The three-dimensional carpet plots of the cord force distribution within a TBR tire are presented. The carcass-bending curvature is derived from the deformation of the carcass center line. A high-efficiency modeling approach for layered multistrand cord structures has been developed that uses cord design variables such as lay angle, lay length, and radius of the strand center line as input. Several types of steel cord have been modeled using the developed method as an example. The pure tension for two cords and the combined tension bending under various loading conditions relevant to tire deformation have been simulated by a finite element analysis (FEA). Good agreement has been found between experimental and FEA-determined tension force-displacement curves, and the characteristic structural and plastic deformation phases have been revealed by the FE simulation. Furthermore, some interesting local stress and deformation patterns under combined tension and bending are found that have not been previously reported. In addition, an experimental cord force measurement approach is included in this article.


2004 ◽  
Vol 126 (5) ◽  
pp. 735-742 ◽  
Author(s):  
Kwang-Yong Kim ◽  
Seoung-Jin Seo

In this paper, the response surface method using a three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved-blade centrifugal fan is described. For the numerical analysis, Reynolds-averaged Navier-Stokes equations with the standard k-ε turbulence model are discretized with finite volume approximations. The SIMPLEC algorithm is used as a velocity–pressure correction procedure. In order to reduce the huge computing time due to a large number of blades in forward-curved-blade centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Four design variables, i.e., location of cutoff, radius of cutoff, expansion angle of scroll, and width of impeller, were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and a linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. Effects of the relative size of the inactive zone at the exit of impeller and momentum fluxes of the flow in scroll on efficiency were further discussed. It was found that the optimization process provides a reliable design of this kind of fan with reasonable computing time.


Author(s):  
Francesco Balduzzi ◽  
Alessandro Bianchini ◽  
Giovanni Ferrara ◽  
David Marten ◽  
George Pechlivanoglou ◽  
...  

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier-Stokes computational fluid dynamics (CFD) now offers a cost-effective, versatile and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional Navier-Stokes simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the three-dimensional unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was payed to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the Lifting Line Free Vortex Wake Model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models and, as the wake is explicitly resolved in contrast to BEM-based methods, LLFVW analyses provide three-dimensional flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.


Author(s):  
Francesco Balduzzi ◽  
David Marten ◽  
Alessandro Bianchini ◽  
Jernej Drofelnik ◽  
Lorenzo Ferrari ◽  
...  

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier–Stokes (NS) computational fluid dynamics (CFD) now offers a cost-effective, versatile, and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional (3D) NS simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the 3D unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was paid to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the lifting line free vortex wake model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models, and as the wake is explicitly resolved in contrast to blade element momentum (BEM)-based methods, LLFVW analyses provide 3D flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.


2012 ◽  
Vol 9 (5) ◽  
pp. 6781-6828 ◽  
Author(s):  
S. Vandenberghe ◽  
M. J. van den Berg ◽  
B. Gräler ◽  
A. Petroselli ◽  
S. Grimaldi ◽  
...  

Abstract. Most of the hydrological and hydraulic studies refer to the notion of a return period to quantify design variables. When dealing with multiple design variables, the well-known univariate statistical analysis is no longer satisfactory and several issues challenge the practitioner. How should one incorporate the dependence between variables? How should the joint return period be defined and applied? In this study, an overview of the state-of-the-art for defining joint return periods is given. The construction of multivariate distribution functions is done through the use of copulas, given their practicality in multivariate frequency analysis and their ability to model numerous types of dependence structures in a flexible way. A case study focusing on the selection of design hydrograph characteristics is presented and the design values of a three-dimensional phenomenon composed of peak discharge, volume and duration are derived. Joint return period methods based on regression analysis, bivariate conditional distributions, bivariate joint distributions, and Kendal distribution functions are investigated and compared highlighting theoretical and practical issues of multivariate frequency analysis. Also an ensemble-based method is introduced. For a given design return period, the method chosen clearly affects the calculated design event. Eventually, light is shed on the practical implications of a chosen method.


Sign in / Sign up

Export Citation Format

Share Document