Upgraded M501G Operating Experience

Author(s):  
H. Arimura ◽  
Y. Iwasaki ◽  
Y. Fukuizumi ◽  
S. Shiozaki ◽  
V. Kallianpur

In 2003 the M501G at Mitsubishi’s in-house combined cycle power plant facility located at Takasago (T-Point) was upgraded. The upgrade was accomplished by replacing some of the existing hardware in the M501G gas turbine, for further improvements in output and heat rate. The verification testing at this power plant has been continuing with MHI’s latest upgraded combustor technology, that has successfully demonstrated NOx levels at 15ppm and 9ppm or lower emission levels in Mitsubishi’s G and F gas turbines, respectively. The upgraded M501G has been officially designated as the M501G1 gas turbine. This paper describes the upgraded hardware and the operating experience at the T-Point power plant.

Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Author(s):  
Koen-Woo Lee ◽  
Hwan-Doo Kim ◽  
Sung-Il Wi ◽  
Jean-Pierre Stalder

This paper presents and discusses the successful operating experience and the issues related to burning low sulphur waxy residual (LSWR) fuel oil at the 507 MW IPP Daesan Combined Cycle Power Plant. The power plant was built and is operated by Hyundai Heavy Industries (HHI). It comprises four Siemens-Westinghouse 501D5 engines, each with a heat recovery boiler including supplementary firing and one steam turbine. This plant, commissioned in 1997, is designed to burn LSWR fuel oil. LSWR fuel oil was selected because of the lower fuel cost as compared to LNG and other liquid fuels available in Korea. By adding a combustion improver to the LSWR fuel oil it is possible for HHI to comply with the tight Korean environmental regulations, despite the tendency for heavy smoke and particulate emissions when burning this type of fuel oil. The successful operating experience, availability, reliability and performance achieved in Daesan, as well as the commercial viability (which by far offsets the additional capital expenditure and the additional related O&M costs) demonstrate that LSWR fuel oil firing in heavy duty gas turbines is rewarding. This is especially important in view of the growing disposal problems of residuals at refineries around the world.


Author(s):  
Christian Engelbert ◽  
Joseph J. Fadok ◽  
Robert A. Fuller ◽  
Bernd Lueneburg

Driven by the requirements of the US electric power market, the suppliers of power plants are challenged to reconcile both plant efficiency and operating flexibility. It is also anticipated that the future market will require more power plants with increased power density by means of a single gas turbine based combined-cycle plant. Paramount for plant efficiency is a highly efficient gas turbine and a state-of-the-art bottoming cycle, which are well harmonized. Also, operating and dispatch flexibility requires a bottoming cycle that has fast start, shutdown and cycling capabilities to support daily start and stop cycles. In order to meet these requirements the author’s company is responding with the development of the single-shaft 1S.W501G combined-cycle power plant. This nominal 400MW class plant will be equipped with the highly efficient W501G gas turbine, hydrogen-cooled generator, single side exhausting KN steam turbine and a Benson™ once-through heat recovery steam generator (Benson™-OT HRSG). The single-shaft 1S.W501G design will allow the plant not only to be operated economically during periods of high demand, but also to compete in the traditional “one-hour-forward” trading market that is served today only by simple-cycle gas turbines. By designing the plant with fast-start capability, start-up emissions, fuel and water consumption will be dramatically reduced. This Reference Power Plant (RPP) therefore represents a logical step in the evolution of combined-cycle power plant designs. It combines both the experiences of the well-known 50Hz single-shaft 1S.V94.3A plant with the fast start plant features developed for the 2.W501F multi-shaft RPP. The paper will address results of the single-shaft 1S.W501G development program within the authors’ company.


Author(s):  
Renzhi Han ◽  
Xin Wang

Combined cycle power plant (CCPP) usually plays an important role in balancing byproduct gas generation and consumption in integrated iron and steel plant. The low heat value fuel gases, such as blast furnace gas (BFG) or mixed gas with Coke oven gas (COG) and BFG, are preferred to be used in high-efficient CCPP for power generation. In practice, the general heat value of mixed gas can be set in the range of 3500–4400[Formula: see text]kJ/Nm3. This paper presents a methodology to simulate operating parameters of CCPP with BFG. A generic model of gas turbine with open loop stage cooling employing air is used to simulate the performance of gas turbines cycle under different compressor pressure ratios and turbine inlet temperatures (TIT). The isentropic efficiencies for gas compressor and gas turbine are supposed to be constants and set corresponding to published industrial experience. The steam cycle is composed of classical double-pressure heat recovery steam generator (HRSG) and steam turbines according to gas turbine outlet temperature. Specific work, gas turbine cycle efficiency, cogeneration thermal efficiency and coolant air flow requirements are evaluated to find the optimal compressor pressure ratio and TIT. The research results are useful to select the optimum operating parameters of CCPP with BFG. Performance features were estimated with the help of compression ratios 12.5–20 and combustor exit temperature 1150–1350[Formula: see text]C.


Author(s):  
S. Can Gulen ◽  
Raub W. Smith

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy utilizing the second law of thermodynamics. The classical first law approach, i.e. the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple, fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy.


Author(s):  
M. Pinelli ◽  
M. Venturini

In the paper, a comprehensive methodology for gas turbine health state determination is applied to a single-shaft Fiat Avio TG 20 gas turbine working in the cogenerative combined cycle power plant of Fiat – Mirafiori (Italy). In order to determine operating state variations from new and clean condition, the following procedures were applied to historical field measurements: • normalization procedure to determine the variations between measured and expected values; • inverse cycle technique to calculate the values of the characteristic parameters that are indices of the machine health state. The application of these techniques to long period operating data allowed measurement validation and the determination of the machine health state. The results showed the good capability of the developed techniques for the determination and the analysis of performance drop due to compressor fouling and to turbine malfunction.


Author(s):  
S. Can Gülen ◽  
Raub W. Smith

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one-third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy, utilizing the second law of thermodynamics. The classical first law approach, i.e., the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy.


Author(s):  
Hsiao-Wei D. Chiang ◽  
Pai-Yi Wang ◽  
Hsin-Lung Li

With increasing demand for power and with shortages envisioned especially during the peak load times during the summer, there is a need to boost gas turbine power. In Taiwan, most of gas turbines operate with combined cycle for base load. Only a small portion of gas turbines operates with simple cycle for peak load. To prevent the electric shortage due to derating of power plants in hot days, the power augmentation strategies for combined cycles need to be studied in advance. As a solution, our objective is to add an overspray inlet fogging system into an existing gas turbine-based combined cycle power plant (CCPP) to study the effects. Simulation runs were made for adding an overspray inlet fogging system to the CCPP under various ambient conditions. The overspray percentage effects on the CCPP thermodynamic performance are also included in this paper. Results demonstrated that the CCPP net power augmentation depends on the percentage of overspray under site average ambient conditions. This paper also included CCPP performance parametric studies in order to propose overspray inlet fogging guidelines for combined cycle power augmentation.


Author(s):  
H. Arimura ◽  
Y. Iwasaki ◽  
S. Shiozaki ◽  
Y. Fukuizumi ◽  
C. Koeneke

This paper reports progress on Mitsubishi’s first commercial introductions of the M501G1 and M701G2 gas turbines for 60Hz and 50Hz, respectively. The first fire of the 50 Hz gas turbine took place late 2006 at Tokyo Electric Power Company’s (TEPCO’s) Kawasaki Thermal Power Station in Japan, and the 60 Hz unit in January 2007 at Portland General Electric’s Port Westward power plant at Portland, Oregon in the USA. The M501G1 and M701G2 gas turbines are upgrades to Mitsubishi G-series technology that was first introduced a decade ago utilizing steam from the bottoming cycle to cool the combustion liner, instead of compressor discharge air. In the abovementioned upgrades steam-cooling application is now extended to cool the turbine blade-rings thereby enabling better blade tip clearance control particularly during start-up transient conditions. It additionally benefits performance and reliability. Upgrades were also made to the row 1 and 2 vanes and row 1 blades utilizing advances in design technology since the original introduction of the G-series in 1997. Long-term reliability verification testing of the M501G1 gas turbine has been continuing at the Mitsubishi’s T-Point combined cycle power plant located at Takasago, Japan, since May 2003. This paper provides an update of that upgraded gas turbine with over three years of operating experience.


Sign in / Sign up

Export Citation Format

Share Document