Enhanced Gas Turbine Performance Simulation Using CFD Modules in a 2D Representation of the Low-Pressure System for a High Bypass Turbofan

Author(s):  
Friederike C. Mund ◽  
Georgios Doulgeris ◽  
Pericles Pilidis

The improvement of performance simulation for gas turbines has been approached in very different ways. In particular for high bypass turbofans, efforts have been made to investigate radial flow distributions. The aim of the presented study was to combine a conventional characteristics based performance code using a 2d representation of the fan with 2d representations of the adjoining intake and bypass system. Computational Fluid Dynamics was the chosen tool to generate modules for the intake, bypass duct and bypass nozzle. This approach required geometry data. A design procedure to generate these components in an axi-symmetric meridional fashion and the numerical requirements for the CFD modules were developed. Typical component performances were predicted and the combined use of CFD and the performance code showed that in terms of performance, the inclusion of intake and bypass losses and the radial inlet distribution was worth considering. In particular however, the required numerical effort was significant.

2006 ◽  
Vol 129 (3) ◽  
pp. 761-768 ◽  
Author(s):  
Friederike C. Mund ◽  
Georgios Doulgeris ◽  
Pericles Pilidis

The improvement of performance simulation for gas turbines has been approached in very different ways. In particular for high-bypass turbofans, efforts have been made to investigate radial flow distributions. The aim of the presented study was to combine a conventional characteristics-based performance code using a 2D representation of the fan with 2D representations of the adjoining intake and bypass system. Computational fluid dynamics (CFD) was the chosen tool to generate modules for the intake, bypass duct, and bypass nozzle. This approach required geometry data. A design procedure to generate these components in an axisymmetric meridional fashion and the numerical requirements for the CFD modules were developed. Typical component performances were predicted and the combined use of CFD and the performance code showed that in terms of performance, the inclusion of intake and bypass losses and the radial inlet distribution was worth considering. In particular, however, the required numerical effort was significant.


Author(s):  
Konstantinos G. Kyprianidis ◽  
Vishal Sethi ◽  
Stephen O. T. Ogaji ◽  
Pericles Pilidis ◽  
Riti Singh ◽  
...  

In this two-part publication, various aspects of thermo-fluid modelling for gas turbines are described and their impact on performance calculations and emissions predictions at aircraft system level is assessed. Accurate and reliable fluid modelling is essential for any gas turbine performance simulation software as it provides a robust foundation for building advanced multi-disciplinary modelling capabilities. Caloric properties for generic and semi-generic gas turbine performance simulation codes can be calculated at various levels of fidelity; selection of the fidelity level is dependent upon the objectives of the simulation and execution time constraints. However, rigorous fluid modelling may not necessarily improve performance simulation accuracy unless all modelling assumptions and sources of uncertainty are aligned to the same level. Certain modelling aspects such as the introduction of chemical kinetics, and dissociation effects, may reduce computational speed and this is of significant importance for radical space exploration and novel propulsion cycle assessment. This paper describes and compares fluid models, based on different levels of fidelity, which have been developed for an industry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles. The latter comprises the following modules: engine performance, aircraft performance, emissions prediction, and environmental impact. The work presented aims to fill the current literature gap by: (i) investigating the common assumptions made in thermo-fluid modelling for gas turbines and their effect on caloric properties and (ii) assessing the impact of uncertainties on performance calculations and emissions predictions at aircraft system level. In Part I of this two-part publication, a comprehensive analysis of thermo-fluid modelling for gas turbines is presented and the fluid models developed are discussed in detail. Common technical models, used for calculating caloric properties, are compared while typical assumptions made in fluid modelling, and the uncertainties induced, are examined. Several analyses, which demonstrate the effects of composition, temperature and pressure on caloric properties of working mediums for gas turbines, are presented. The working mediums examined include dry air and combustion products for various fuels and H/C ratios. The errors induced by ignoring dissociation effects are also discussed.


Author(s):  
Konstantinos G. Kyprianidis ◽  
Vishal Sethi ◽  
Stephen O. T. Ogaji ◽  
Pericles Pilidis ◽  
Riti Singh ◽  
...  

In this two-part publication, various aspects of thermo-fluid modelling for gas turbines are described and their impact on performance calculations and emissions predictions at aircraft system level is assessed. Accurate and reliable fluid modelling is essential for any gas turbine performance simulation software as it provides a robust foundation for building advanced multi-disciplinary modelling capabilities. Caloric properties for generic and semi-generic gas turbine performance simulation codes can be calculated at various levels of fidelity; selection of the fidelity level is dependent upon the objectives of the simulation and execution time constraints. However, rigorous fluid modelling may not necessarily improve performance simulation accuracy unless all modelling assumptions and sources of uncertainty are aligned to the same level. Certain modelling aspects such as the introduction of chemical kinetics, and dissociation effects, may reduce computational speed and this is of significant importance for radical space exploration and novel propulsion cycle assessment. This paper describes and compares fluid models, based on different levels of fidelity, which have been developed for an industry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles. The latter comprises the following modules: engine performance, aircraft performance, emissions prediction, and environmental impact. The work presented aims to fill the current literature gap by: (i) investigating the common assumptions made in thermo-fluid modelling for gas turbines and their effect on caloric properties and (ii) assessing the impact of uncertainties on performance calculations and emissions predictions at aircraft system level. In Part II of this two-part publication, the uncertainty induced in performance calculations by common technical models, used for calculating caloric properties, is discussed at engine level. The errors induced by ignoring dissociation are examined at 3 different levels: i) component level, ii) engine level, and iii) aircraft system level. Essentially, an attempt is made to shed light on the trade-off between improving the accuracy of a fluid model and the accuracy of a multi-disciplinary simulation at aircraft system level, against computational time penalties. The results obtained demonstrate that accurate modelling of the working fluid is not always essential; the accuracy/uncertainty for an overall engine model will always be better than the mean accuracy/uncertainty of the individual component estimates as long as systematic errors are carefully examined and reduced to acceptable levels to ensure error propagation does not cause significant discrepancies. Computational time penalties induced by improving the accuracy of the fluid model as well as the validity of the ideal gas assumption for future turbofan engines and novel propulsion cycles are discussed.


Author(s):  
K G Kyprianidis ◽  
V Sethi ◽  
S O T Ogaji ◽  
P Pilidis ◽  
R Singh ◽  
...  

In this article, various aspects of thermo-fluid modelling for gas turbines are described and the impact on performance calculations and emissions predictions at aircraft system level is assessed. Accurate and reliable fluid modelling is essential for any gas turbine performance simulation software as it provides a robust foundation for building advanced multi-disciplinary modelling capabilities. Caloric properties for generic and semi-generic gas turbine performance simulation codes can be calculated at various levels of fidelity; selection of the fidelity level is dependent upon the objectives of the simulation and execution time constraints. However, rigorous fluid modelling may not necessarily improve performance simulation accuracy unless all modelling assumptions and sources of uncertainty are aligned to the same level. A comprehensive analysis of thermo-fluid modelling for gas turbines is presented, and the fluid models developed are discussed in detail. Common technical models, used for calculating caloric properties, are compared while typical assumptions made in fluid modelling, and the uncertainties induced, are examined. Several analyses, which demonstrate the effects of composition, temperature, and pressure on caloric properties of working media for gas turbines, are presented. The working media examined include dry air and combustion products for various fuels and H/C ratios. The uncertainty induced in calculations by (a) using common technical models for evaluating fluid caloric properties and (b) ignoring dissociation effects is examined at three different levels: (i) component level, (ii) engine level, and (iii) aircraft system level. An attempt is made to shed light on the trade-off between improving the accuracy of a fluid model and the accuracy of a multi-disciplinary simulation at aircraft system level, against computational time penalties. The validity of the ideal gas assumption for future turbofan engines and novel propulsion cycles is discussed. The results obtained demonstrate that accurate modelling of the working fluid is essential, especially for assessing novel and/or aggressive cycles at aircraft system level. Where radical design space exploration is concerned, improving the accuracy of the fluid model will need to be carefully balanced with the computational time penalties involved.


Author(s):  
Elias Tsoutsanis ◽  
Nader Meskin ◽  
Mohieddine Benammar ◽  
Khashayar Khorasani

In fossil fuel applications, such as air transportation and power generation systems, gas turbine is the prime mover which governs the aircraft’s propulsive and the plant’s thermal efficiency, respectively. Therefore, an accurate engine performance simulation has a significant impact on the operation and maintenance of gas turbines as far as reliability and availability considerations are concerned. Current trends in achieving stable engine operation, reliable fault diagnosis and prognosis requirements do motivate the development and implementation of real-time dynamic simulators for gas turbines that are sufficiently complex, highly nonlinear, have high fidelity and include fast response modules. This paper presents a gas turbine performance model for predicting the transient dynamic behavior of an aeroderivative engine that is suitable for both mechanical drive and power generation applications. The engine model has been developed in the Matlab/Simulink environment and combines both the inter-component volume and the constant mass flow methods. Dynamic equations of the mass momentum and the energy balance are incorporated into the steady state thermodynamic equations. This allows one to represent the engine model by a set of first order differential and algebraic equations. The developed Simulink model in an object oriented environment, can be easily adapted to any kind of gas turbine configuration. The model consists of a number of subsystems for representing the gas turbine’s components and the thermodynamic relationships among them. The components are represented by a set of suitable performance maps that are available from the open literature. The engine model has been validated with an established gas turbine performance simulation software. Time responses of the main variables that describe the gas turbine dynamic behavior are also included. The proposed gas turbine model with its dynamic simulation characteristics is a useful tool for development of real-time model-based diagnostics and prognostics technologies.


Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


2021 ◽  
Author(s):  
Oliver Sjögren ◽  
Carlos Xisto ◽  
Tomas Grönstedt

Abstract The aim of this study is to explore the possibility of matching a cycle performance model to public data on a state-of-the-art commercial aircraft engine (GEnx-1B). The study is focused on obtaining valuable information on figure of merits for the technology level of the low-pressure system and associated uncertainties. It is therefore directed more specifically towards the fan and low-pressure turbine efficiencies, the Mach number at the fan-face, the distribution of power between the core and the bypass stream as well as the fan pressure ratio. Available cycle performance data have been extracted from the engine emission databank provided by the International Civil Aviation Organization (ICAO), type certificate datasheets from the European Union Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA), as well as publicly available data from engine manufacturer. Uncertainties in the available source data are estimated and randomly sampled to generate inputs for a model matching procedure. The results show that fuel performance can be estimated with some degree of confidence. However, the study also indicates that a high degree of uncertainty is expected in the prediction of key low-pressure system performance metrics, when relying solely on publicly available data. This outcome highlights the importance of statistic-based methods as a support tool for the inverse design procedures. It also provides a better understanding on the limitations of conventional thermodynamic matching procedures, and the need to complement with methods that take into account conceptual design, cost and fuel burn.


Sign in / Sign up

Export Citation Format

Share Document