Turbulence Modeling for the Numerical Simulation of Film and Effusion Cooling Flows

Author(s):  
Alessandro Bacci ◽  
Bruno Facchini

RANS simulations are known to suffer from serious deficiencies in the prediction of jet in a crossflow (JCF) because of the high complexity of this kind of flow. Particularly, the coherent structures resulting from the interaction of the two flow streams are characterized by a highly unsteady and anisotropic behavior which hardly stresses the hypotheses underling common eddy viscosity models (EVMs). Direct numerical simulation (DNS) and large eddy simulation (LES) methodologies are still excessively computationally intensive to be used as ordinary design tools. Therefore, the development of reliable RANS turbulence models for film cooling flows deserved a great deal of attention from the gas turbine community. Computations presented in this work were carried out using a modified k-ε turbulence model specifically designed for film cooling flows. The model, due to Lakehal et al., is based on the usage of an anisotropic eddy viscosity. The model has been implemented in the framework of a CFD commercial package through the user subroutine features. Computational model is developed following the suggestions of Walters and Leylek concerning the correct representation of the problem geometry and the location of the boundary conditions. The predictive capabilities of the model concerning the ability to capture the main flow structures as well as heat transfer features are investigated. Comparison of computed adiabatic effectiveness profiles with experimental measurements is provided in order to quantitatively validate the model. Results obtained with standard EVMs, particularly a two layer standard k-ε model, are also shown in order to reveal the improvements in the predictive capabilities resulting from the modified models.

Author(s):  
Lei-Yong Jiang ◽  
Ian Campbell

The flow field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically investigated. Solutions obtained from four turbulence models together with a laminar flamelet combustion model, discrete ordinates radiation model and enhanced wall treatment are presented and discussed. The numerical results are compared, in detail, with a comprehensive database obtained from a series of experimental measurements. It is found that the Reynolds stress model (RSM), a second moment closure, illustrates superior performance over three popular two-equation eddy-viscosity models. Although the main flow features are captured by all four turbulence models, only the RSM is able to successfully predict the lengths of both recirculation zones and the turbulence kinetic energy distribution in the combustor chamber. In addition, it provides fairly good predictions for all Reynolds stress components, except for the circumferential normal stress at downstream sections. However, the superiority of the RSM is not so obvious for the temperature and species predictions in comparison with eddy-viscosity models, except for the standard k-ε model. This suggests that coupling between the RSM and combustion models needs to be further improved in order to enhance its applications in practical combustion systems.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 148 ◽  
Author(s):  
Chunhui Zhang ◽  
Charles Patrick Bounds ◽  
Lee Foster ◽  
Mesbah Uddin

In today’s road vehicle design processes, Computational Fluid Dynamics (CFD) has emerged as one of the major investigative tools for aerodynamics analyses. The age-old CFD methodology based on the Reynolds Averaged Navier–Stokes (RANS) approach is still considered as the most popular turbulence modeling approach in automotive industries due to its acceptable accuracy and affordable computational cost for predicting flows involving complex geometries. This popular use of RANS still persists in spite of the well-known fact that, for automotive flows, RANS turbulence models often fail to characterize the associated flow-field properly. It is even true that more often, the RANS approach fails to predict correct integral aerodynamic quantities like lift, drag, or moment coefficients, and as such, they are used to assess the relative magnitude and direction of a trend. Moreover, even for such purposes, notable disagreements generally exist between results predicted by different RANS models. Thanks to fast advances in computer technology, increasing popularity has been seen in the use of the hybrid Detached Eddy Simulation (DES), which blends the RANS approach with Large Eddy Simulation (LES). The DES methodology demonstrated a high potential of being more accurate and informative than the RANS approaches. Whilst evaluations of RANS and DES models on various applications are abundant in the literature, such evaluations on full-car models are relatively fewer. In this study, four RANS models that are widely used in engineering applications, i.e., the realizable k - ε two-layer, Abe–Kondoh–Nagano (AKN) k - ε low-Reynolds, SST k - ω , and V2F are evaluated on a full-scale passenger vehicle with two different front-end configurations. In addition, both cases are run with two DES models to assess the differences between the flow predictions obtained using RANS and DES.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 198
Author(s):  
Seung Il Baek ◽  
Joon Ahn

A large eddy simulation (LES) was performed for film cooling in the gas turbine blade involving spanwise injection angles (orientation angles). For a streamwise coolant injection angle (inclination angle) of 35°, the effects of the orientation angle were compared considering a simple angle of 0° and 30°. Two ratios of the coolant to main flow mass flux (blowing ratio) of 0.5 and 1.0 were considered and the experimental conditions of Jung and Lee (2000) were adopted for the geometry and flow conditions. Moreover, a Reynolds averaged Navier–Stokes simulation (RANS) was performed to understand the characteristics of the turbulence models compared to those in the LES and experiments. In the RANS, three turbulence models were compared, namely, the realizable k-ε, k-ω shear stress transport, and Reynolds stress models. The temperature field and flow fields predicted through the RANS were similar to those obtained through the experiment and LES. Nevertheless, at a simple angle, the point at which the counter-rotating vortex pair (CRVP) collided on the wall and rose was different from that in the experiment and LES. Under the compound angle, the point at which the CRVP changed to a single vortex was different from that in the LES. The adiabatic film cooling effectiveness could not be accurately determined through the RANS but was well reflected by the LES, even under the compound angle. The reattachment of the injectant at a blowing ratio of 1.0 was better predicted by the RANS at the compound angle than at the simple angle. The temperature fluctuation was predicted to decrease slightly when the injectant was supplied at a compound angle.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 407
Author(s):  
Saule Maulenkul ◽  
Kaiyrbek Yerzhanov ◽  
Azamat Kabidollayev ◽  
Bagdaulet Kamalov ◽  
Sagidolla Batay ◽  
...  

The demand in solving complex turbulent fluid flows has been growing rapidly in the automotive industry for the last decade as engineers strive to design better vehicles to improve drag coefficients, noise levels and drivability. This paper presents the implementation of an arbitrary hybrid turbulence modeling (AHTM) approach in OpenFOAM for the efficient simulation of common automotive aerodynamics with unsteady turbulent separated flows such as the Kelvin–Helmholtz effect, which can also be used as an efficient part of aerodynamic design optimization (ADO) tools. This AHTM approach is based on the concept of Very Large Eddy Simulation (VLES), which can arbitrarily combine RANS, URANS, LES and DNS turbulence models in a single flow field depending on the local mesh refinement. As a result, the design engineer can take advantage of this unique and highly flexible approach to tailor his grid according to his design and resolution requirements in different areas of the flow field over the car body without sacrificing accuracy and efficiency at the same time. This paper presents the details of the implementation and careful validation of the AHTM method using the standard benchmark case of the Ahmed body, in comparison with some other existing models, such as RANS, URANS, DES and LES, which shows VLES to be the most accurate among the five examined. Furthermore, the results of this study demonstrate that the AHTM approach has the flexibility, efficiency and accuracy to be integrated with ADO tools for engineering design in the automotive industry. The approach can also be used for the detailed study of highly complex turbulent phenomena such as the Kelvin–Helmholtz instability commonly found in automotive aerodynamics. Currently, the AHTM implementation is being integrated with the DAFoam for gradient-based multi-point ADO using an efficient adjoint solver based on a Sparse Nonlinear optimizer (SNOPT).


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Hassan Raiesi ◽  
Ugo Piomelli ◽  
Andrew Pollard

The performance of some commonly used eddy-viscosity turbulence models has been evaluated using direct numerical simulation (DNS) and large-eddy simulation (LES) data. Two configurations have been tested, a two-dimensional boundary layer undergoing pressure-driven separation, and a square duct. The DNS and LES were used to assess the k−ε, ζ−f, k−ω, and Spalart–Allmaras models. For the two-dimensional separated boundary layer, anisotropic effects are not significant and the eddy-viscosity assumption works well. However, the near-wall treatment used in k−ε models was found to have a critical effect on the predictive accuracy of the model (and, in particular, of separation and reattachment points). None of the wall treatments tested resulted in accurate prediction of the flow field. Better results were obtained with models that do not require special treatment in the inner layer (ζ−f, k−ω, and Spalart–Allmaras models). For the square duct calculation, only a nonlinear constitutive relation was found to be able to capture the secondary flow, giving results in agreement with the data. Linear models had significant error.


2019 ◽  
Vol 213 ◽  
pp. 02076
Author(s):  
Jan Sip ◽  
Frantisek Lizal ◽  
Jakub Elcner ◽  
Jan Pokorny ◽  
Miroslav Jicha

The velocity field in the area behind the automotive vent was measured by hot-wire anenemometry in detail and intensity of turbulence was calculated. Numerical simulation of the same flow field was performed using Computational fluid dynamics in commecial software STAR-CCM+. Several turbulence models were tested and compared with Large Eddy Simulation. The influence of turbulence model on the results of air flow from the vent was investigated. The comparison of simulations and experimental results showed that most precise prediction of flow field was provided by Spalart-Allmaras model. Large eddy simulation did not provide results in quality that would compensate for the increased computing cost.


2002 ◽  
Vol 124 (3) ◽  
pp. 668-677 ◽  
Author(s):  
G. M. Bianchi ◽  
G. Cantore ◽  
P. Parmeggiani ◽  
V. Michelassi

The linear k-ε model, in its different formulations, still remains the most widely used turbulence model for the solutions of internal combustion engine (ICE) flows thanks to the use of only two scale-determining transport variables and the simple constitutive relation. This paper discusses the application of nonlinear k-ε turbulence models for internal combustion engine flows. Motivations to nonlinear eddy viscosity models use arise from the consideration that such models combine the simplicity of linear eddy-viscosity models with the predictive properties of second moment closure. In this research the nonlinear k-ε models developed by Speziale in quadratic expansion, and Craft et al. in cubic expansion, have been applied to a practical tumble flow. Comparisons between calculated and measured mean velocity components and turbulence intensity were performed for simple flow structure case. The effects of quadratic and cubic formulations on numerical predictions were investigated too, with particular emphasis on anisotropy and influence of streamline curvature on Reynolds stresses.


Sign in / Sign up

Export Citation Format

Share Document