An Investigation of Tip Force Characteristics of Brush Seals

Author(s):  
Mehmet Demiroglu ◽  
Mustafa Gursoy ◽  
John A. Tichy

Thanks to their compliant nature and superior leakage performance over conventional labyrinth seals, brush seals found increasing use in turbomachinery. Utilizing high temperature super-alloy fibers and their compliance capability these seals maintain contact with the rotor for a wide range of operating conditions leaving minimal passage for parasitic leakage flow. Consequently, the contact force/pressure generated at seal rotor interface is of importance for sustained seal performance and longevity of its service life. Although some analytical and numerical models have been developed to estimate bristle tip pressures, they simply rely on linear beam equation calculations and other such assumptions for loading cases. In this paper, previously available analytical and/or numerical models for bristle tip force/pressure have been modified and enhanced. The nonlinear cantilever beam equation has been solved and results are compared to a linear cantilever beam equation solution to establish application boundaries for both methods. The results are also compared to experimental data. With the support of testing, an empirical model has been developed for tip forces under operating conditions.


Author(s):  
Bilal Outirba ◽  
Patrick Hendrick

Abstract Carbon fibre brush seals are an alternative to labyrinth seals in aero-engines lubrication systems due to better sealing ability with low power loss. However, the use of brush seals still raises concerns about coking issues. In addition, the influence of oil on the brush seal behaviour needs to be fully assessed. This paper provides an experimental investigation of the effect of lubrication oil on the performance of carbon fibre brush seals under static and dynamic conditions. Eight brush seal samples of various geometrical designs were submitted to an environment recreating the working conditions of a modern aero-engine bearing chamber in terms of rotational speed, air pressure, and oil type of injection and temperature. The test results indicated that the performance of carbon fibre brush seals was deeply influenced by the presence of oil within fibres. Oil deeply influences leakage performance, depending on geometrical parameters (density, fibre length and interference) and operating conditions (oil temperature, rotational speed). Brush seal fibre pack is mainly prone to hydrodynamic lift and oil soaking, which is defined by the ability of lubrication oil to fill in properly the interstices between fibres. Viscosity and surface tension may be the key properties influencing oil soaking. Seal torque data corroborates the presence of a hydrodynamic lift. In addition, in absence of differential pressure, seal torque decrease with when oil temperature increases indicates the existence of a critical viscosity. Finally, oil lubrication within the bristles allows reduction of the inter-bristle friction, thus limiting hysteresis.



Author(s):  
Michael Flouros ◽  
Martin Stadlbauer ◽  
Francois Cottier ◽  
Stephan Proestler ◽  
Stefan Beichl

For the past 25 years brush seal technologies have evolved into the aero engine designs and, more generally, into the gas turbine world, not only for sealing gas areas at different pressure levels but also for sealing gas/liquid environments. This is the case in an aero engine where the bearing chambers are sealed. Aero engine bearing chambers enclose oil lubricated components such bearings and gears. In order to avoid contamination of the turbo machinery through oil loss, air blown seals are used to retain the oil into the bearing chamber. Oil loss may cause coking or ignition with the probability of an uncontained destruction of rotating parts such as disks or blades. It may also cause contamination of the air conditioning system with oil fumes thus causing health problems to the passengers and crew from such exposure. The most widely known seals for bearing chamber sealing are the labyrinth seals, however, in recent years brush seals and carbon seals have also been used. The latter are contact seals; that is, they may be installed having zero clearance to the rotating part and lift during operation when their air side is pressurized. During this survey an actual aero engine bearing chamber was modified to run with brush seals in a simulating rig. Two types of brush seals were used: (a) with bristles made of Kevlar, and (b) bristles made of a metallic material. Both types were installed with an overlap to the rotor. The targets set were twofold: (a) to measure the transient temperatures in the rotor and particularly in the contact zone between the bristles and the rotor, and (b) to measure the air leakage through the seals at different operating conditions. In order to obtain the transient temperature measurements with high fidelity, a new pyrometric technique was developed and was applied for the first time in brush seals. This technique has enabled placement of the pyrometer into the bristle's pack of the seal adjacent to the rotating surface and it could record the frictional temperature evolution in the bristles/rotor contact zone during acceleration or deceleration of the rotor. Additionally, the air consumption of the seals was measured and was compared to the air consumption through the labyrinth seals. For the metallic brush seal, up to 80% of the required sealing air can be saved, which can result, in turn, into a reduction in fuel burned by up to 1%. Furthermore, a design simplification of the bearing chamber architecture can be achieved by taking into account the reduced air flow. Even though the rotor was accelerated to high speeds up to 19,500 rpm, the produced temperature overshoots in the seal/rotor contact zone have caused no deterioration in either the materials or the oil.



Author(s):  
Mehmet Demiroglu ◽  
John A. Tichy

Brush seals are considered as a category of compliant seals, which tolerate a great high level of interference between the seal and the rotor or shaft. Their superior leakage characteristics have opened many application fields in the turbo-machinery world, ranging from industrial steam turbines to jet engines. However, brush seal designers have to find a trade-off between the lower parasitic leakage but higher heat generation properties of brush seals for given operation conditions. As brush seals can maintain contact with the rotor for a wide range of operating conditions, the contact force/pressure generated at the seal-rotor interface becomes an important design parameter for sustained seal performance and longevity of its service life. Furthermore, due to this contact force at the interface, frictional heat generation is inevitable and must be evaluated for various design and operating conditions. In this paper, frictional heat generation at the sealrotor interface is studied. To capture temperature rise at the interface, a thermal image of the seal and rotor is taken with an infrared camera under various operating conditions. The temperature map of the rotor is compared to results from thermal finite element analysis of the rotor to back calculate the heat flux to the rotor. A closed form equation for frictional heat generation is suggested as a function of seal design parameters, material properties, friction coefficient and empirical factors from testing.



Author(s):  
Michael Flouros ◽  
Martin Stadlbauer ◽  
Francois Cottier ◽  
Stephan Proestler ◽  
Stefan Beichl

For the past 25 years brush seal technologies evolved into the aero engine designs and more general into the gas turbine world not only for sealing gas areas at different pressure levels but also for sealing gas/liquid environments. This is the case in an aero engine where the bearing chambers are sealed. Aero engine bearing chambers enclose oil lubricated components such bearings and gears. In order to avoid contamination of the turbo machinery through oil loss, air blown seals are used to retain the oil into the bearing chamber. Oil loss may cause coking or ignition with the probability of an uncontained destruction of rotating parts like disks or blades. It may also cause contamination of the air conditioning system with oil fumes thus cause health problems to the passengers and crew from such exposure. The most widely known seals for bearing chamber sealing are the labyrinth seals but in the recent years also brush seals and carbon seals are used. The latter are contact seals, that is, they may be installed having zero clearance to the rotating part and lift during operation when their air side is pressurized. During this survey an actual aero engine bearing chamber was modified to run with brush seals in a simulating rig. Two types of brush seals were used: a) with bristles made of Kevlar and b) bristles made of metallic material. Both types were installed with an overlap to the rotor. The targets set were twofold: a) to measure the transient temperatures in the rotor and particularly in the contact zone between the bristles and the rotor and b) to measure the air leakage through the seals at different operating conditions. In order to obtain the transient temperature measurements with high fidelity, a new pyrometric technique was developed and was applied for the first time in brush seals. This technique has enabled placing the pyrometer into the bristle’s pack of the seal adjacent to the rotating surface and could record the frictional temperature evolution in the bristles/rotor contact zone during acceleration or deceleration of the rotor. Additionally, the air consumption of the seals was measured and was compared to the air consumption through the labyrinth seals. For the metallic brush seal, up to 80% of the required sealing air can be saved which can result in return into a reduction in fuel burned by up to 1%. Further, a design simplification of the bearing chamber architecture can be achieved by taking into account the reduced air flow. Even though the rotor was accelerated to high speeds up to 19500rpm, the produced temperature overshoots in the seal/rotor contact zone have caused no deterioration in either the materials or the oil. This work is part of the European Union funded research programme ELUBSYS (Engine LUBrication System TechnologieS) within the 7th EU Frame Programme for Aeronautics and Transport (AAT.2008.4.2.3).



2002 ◽  
Vol 125 (1) ◽  
pp. 316-325 ◽  
Author(s):  
S.-Y. Park ◽  
D. L. Rhode

New information and an enhanced understanding concerning the oil vapor contaminant leaking through nonflooded oil labyrinth seals are provided. The results were obtained using a finite volume Navier-Stokes computer code that was extended to include the concentration transport equation. The minimum (i.e., critical) pressure and flow rate at which uncontaminated buffer gas must be injected to prevent oil vapor from leaking to the process gas was determined for a range of seal geometries and operating conditions. It was found that the variation of the critical buffer-gas injection pressure with bearing gas and process gas pressures, for example, was surprisingly small for the cases considered. In addition, the bearing gas and oil vapor flow rates for a wide range of bearing and injection (where present) pressures and geometries were determined for both buffered as well as nonbuffered seals.



Author(s):  
Marco Mantero ◽  
Alessandro Vinci ◽  
Luca Bozzi ◽  
Enrico D’Angelo

In order to achieve significant secondary air savings in heavy duty gas turbines, a remarkable item of improvement is the reduction of seal flows for turbine stator-rotor cavities. The optimization of such flows allows to avoid waste of air, obligatory with standard labyrinth seals, to ensure the minimum sealing flow rate in all operating conditions. Based on the experience gained in the design of sealing system of stator-rotor cavities with standard seals, the project of installation of inter-stage brush-seals was undertaken incorporating such devices into the vane seal rings of 2nd and 3rd turbine stages of a AE94.3A Gas Turbine (GT). The paper offers a detailed description of the installation project. The following describes in detail the design flow process and the calculation methodologies used, step by step, to define the geometry of brush-seals in order to ensure mechanical integrity and durability, needed in the commercial operation, without thereby affecting the performance. The first prototype of brush-seal devices has been installed on a AE94.3A4 unit of the Ansaldo fleet. In order to verify the behavior of stator-rotor sealing system, in particular in terms of temperature and pressure variations, vane seal rings have been equipped with special instrumentation. A series of tests to optimize the set points of bleed control valves was carried out.



Author(s):  
Francesco Salvatore ◽  
Zohreh Sarichloo ◽  
Danilo Calcagni

A computational methodology for the hydrodynamic analysis of horizontal axis marine current turbines is presented. The approach is based on a boundary integral equation method for inviscid flows originally developed for marine propellers and adapted here to describe the flow features that characterize hydrokinetic turbines. To this purpose, semi-analytical trailing wake and viscous-flow correction models are introduced. A validation study is performed by comparing hydrodynamic performance predictions with two experimental test cases and with results from other numerical models in the literature. The capability of the proposed methodology to correctly describe turbine thrust and power over a wide range of operating conditions is discussed. Viscosity effects associated to blade flow separation and stall are taken into account and predicted thrust and power are comparable with results of blade element methods that are largely used in the design of marine current turbines. The accuracy of numerical predictions tend to reduce in cases where turbine blades operate in off-design conditions.



Sign in / Sign up

Export Citation Format

Share Document