PIV Investigation of a High Speed Centrifugal Compressor Diffuser: Spanwise and Loading Variations

Author(s):  
Beni Cukurel ◽  
Patrick B. Lawless ◽  
Sanford Fleeter

An efficient diffuser is essential to a modern compressor stage, due to its significance in stage performance, durability and operability. To address the need for data that describe the complex, unsteady flow field in a vaned diffuser, Particle Image Velocity is utilized to characterize the spanwise and circumferential variations of the flow features in the vaned diffuser passage of a transonic centrifugal compressor. The spanwise variation in the diffuser flow field is further investigated by comparison of 3 different operating conditions representative of low, nominal and high loading. These data demonstrate that not only the diffuser flow field is highly dependent on the operation conditions, e.g. hub-to-shroud variation increases with loading, but also the circumferential periodicity, created by the highly three dimensional impeller discharge flow, generates a larger unsteadiness towards the hub region of the vaned diffuser.

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Beni Cukurel ◽  
Patrick B. Lawless ◽  
Sanford Fleeter

An efficient diffuser is essential to a modern compressor stage due to its significance in stage performance, durability, and operability. To address the need for data that describe the complex, unsteady flow field in a vaned diffuser, particle image velocity is utilized to characterize the spanwise and circumferential variations in the flow features in the vaned diffuser passage of a transonic centrifugal compressor. The spanwise variation in the diffuser flow field is further investigated by the comparison of three different operating conditions representative of low, nominal, and high loading. These data demonstrate that not only the diffuser flow field is highly dependent on the operation conditions, e.g., hub-to-shroud variation increases with loading, but also the circumferential periodicity, created by the highly three dimensional impeller discharge flow, generates a larger unsteadiness toward the hub region of the vaned diffuser.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Seiichi Ibaraki

The flow field of a high pressure ratio centrifugal compressor for turbocharger applications is investigated using a three-dimensional Navier-Stokes solver. The compressor is composed of a double-splitter impeller followed by a vaned diffuser. The flow field of the transonic open-shrouded impeller is highly three-dimensional, and it is influenced by shock waves, tip leakage vortices and secondary flows. Their interactions generate complex flow structures which are convected and distorted through the impeller blades. Both steady and unsteady computations are performed in order to understand the physical mechanisms which govern the impeller flow field while the operation ranges from choke to surge. Detailed Laser Doppler Velocimetry (LDV) flow measurements are available at various cross-sections inside the impeller blades at both design and off-design operating conditions.


Author(s):  
N Bulot ◽  
I Trébinjac ◽  
X Ottavy ◽  
P Kulisa ◽  
G Halter ◽  
...  

Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. The present article focuses on the results obtained within the impeller, at an operating condition close to the surge of the compressor. The experimental results were obtained from a laser Doppler anemometry investigation. Unsteady numerical simulations of the compressor stage were performed using a three-dimensional Reynolds-averaged Navier—Stokes code with a phase-lagged technique, at both peak efficiency and close to surge operating conditions. A good agreement between the experiments and simulations were obtained, which justifies the use of the computational fluid dynamics results for the comparison of the flow field at both operating conditions (peak efficiency and near surge). Even if the change in flow field within the impeller from peak efficiency to near surge looked to be gradual, an overall rotation of the whole flow in the blade passages led to a non-homogeneous flow at the impeller exit in terms of angle and velocity level. Therefore, the vaned diffuser has to tolerate upstream flows, which are all the more distorted as the operating point moves towards surge.


2021 ◽  
Author(s):  
Kazutoyo Yamada ◽  
Kosuke Kubo ◽  
Kenichiro Iwakiri ◽  
Yoshihiro Ishikawa ◽  
Hirotaka Higashimori

Abstract This paper discusses the unsteady effects associated with the impeller/diffuser interaction on the internal flow field and aerodynamic performance of a centrifugal compressor. In centrifugal compressors with a vaned diffuser, the flow field is inherently unsteady due to the influence of interaction between the impeller and the diffuser, and the unsteadiness of the flow field can often have a great influence on the aerodynamic performance of the compressor. Especially in high-load compressors, it is considered that large unsteady effects are produced on the compressor performance with a strong flow unsteadiness. The unsteady effect on aerodynamic performance of the compressor has not been fully revealed yet, and sometimes the steady-state RANS simulation finds it difficult to predict the compressor performance. In this study, numerical simulations have been conducted for a transonic centrifugal compressor with a vaned diffuser. The unsteady effects were clarified by comparing the numerical results between a single-passage steady-state RANS analysis and a full-annulus unsteady RANS analysis. The comparison of simulation results showed the difference in entropy generation in the impeller. The impingement of diffuser shock wave with the impeller pressure surface brought about a cyclic increase in the blade loading near the impeller trailing edge. Accordingly, with increasing tip leakage flow rate, a second tip leakage vortex was newly generated in the aft part of the impeller, which resulted in additional unsteady loss generation inside the impeller.


Author(s):  
Michael M. Cui

To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k-ε turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both unsteady flow field and overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both overall performance data and local flow field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow field quantities is defined. The methodology developed and data obtained in these studies can be applied to centrifugal compressor design and optimization.


Author(s):  
Guang Xi ◽  
Zhiheng Wang ◽  
Chunmei Zhang ◽  
Minjian Yuan

In this paper the design optimization of vaned diffuser for the 100kW microturbine’s centrifugal compressor is carried out. The forward-loaded and the conventional airfoil diffusers are respectively redesigned based on the surrogate model and the three dimensional viscous flow analyses. The objective of the optimization is to redesign the diffuser that assures, for a given operating condition of the centrifugal impeller, the stage isentropic efficiency to be highest. Using the surrogate model the optimization process is accelerated and the 3D flow analysis’s application to the practical engineering design is efficiently realized. To validate the optimization result, the compressor stage performance test is performed on a high speed centrifugal compressor test rig with one original diffuser and its redesigned, respectively.


2006 ◽  
Vol 129 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Seiichi Ibaraki ◽  
Tetsuya Matsuo ◽  
Takao Yokoyama

Transonic centrifugal compressors are used with high-load turbochargers and turboshaft engines. These compressors usually have a vaned diffuser to increase the efficiency and the pressure ratio. To improve the performance of such a centrifugal compressor, it is required to optimize not only the impeller but also the diffuser. However the flow field of the diffuser is quite complex and unsteady because of the impeller located upstream. Although some research on vaned diffusers has been published, the diffuser flow is strongly dependent on the particular impeller exit flow, and some of the flow physics remain to be elucidated. In the research reported here, detailed flow measurements within a vaned diffuser were conducted using a particle image velocimetery (PIV). The vaned diffuser was designed with high subsonic inlet conditions marked by an inlet Mach number of 0.95 for the transonic compressor. As a result, a complex three-dimensional flow with distortion between the shroud and the hub was observed. Also, unsteady flow accompanying the inflow of the impeller wake was confirmed. Steady computational flow analysis was performed and compared with the experimental results.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Klemens Vogel ◽  
Reza S. Abhari ◽  
Armin Zemp

Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies, and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezoresistive pressure transducers. The unsteady pressures were recorded for nine operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady computational fluid dynamics (CFD) simulations using ansys cfx V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading, and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet-wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.


1997 ◽  
Vol 119 (4) ◽  
pp. 968-977 ◽  
Author(s):  
K. Eisele ◽  
Z. Zhang ◽  
M. V. Casey ◽  
J. Gu¨lich ◽  
A. Schachenmann

This paper describes experimental research aimed at improving our understanding of the complex unsteady three-dimensional flow field associated with the interaction between a pump impeller and its vaned diffuser. The paper provides the results of experiments carried out using Laser Particle Tracking Velocimetry (LPTV) and Laser Doppler Anemometry (LDA), in which time-resolved details of the unsteady flow field in a vaned diffuser of a medium specific speed pump have been obtained as a function of the local position of the pump impeller blades. Detailed flow field measurements have been carried out at several measurement positions in the diffuser and at a number of operating points along the pump characteristic. The measurement results have been analyzed to elucidate some interesting flow features observed in this typical pump diffuser. These include three-dimensional flow at the impeller outlet, flow separation in the diffuser channel, unsteady recirculation of the flow from the diffuser into the impeller, the passage of vorticity in the impeller blade wakes through the diffuser, and periodic unsteadiness and turbulence in the diffuser flow channel. The relevance of these flow features to the stability of the pump characteristic is discussed.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Seiichi Ibaraki

A three-dimensional Navier–Stokes solver is used to investigate the flow field of a high pressure ratio centrifugal compressor for turbocharger applications. Such a compressor consists of a double-splitter impeller followed by a vaned diffuser. Particular attention is focused on the analysis of the vaned diffuser, designed for high subsonic inlet conditions. The diffuser is characterized by a complex three-dimensional flow field and influenced by the unsteady interaction with the impeller. Detailed particle image velocimetry flow measurements within the diffuser are available for comparison purposes.


Sign in / Sign up

Export Citation Format

Share Document